4x=t
t > 0
4x+2=16t
16x=t2
64x=t3
4x+2=16t
(t3–7t2)/(t+1) +(6t2–48t+42)/(t–6) ≥ 0
(t2·(t–7)·(t–6) +6(t–1)(t–7)·(t+1))/(t+1)(t–6) ≥ 0
(t–7)(t3–6t2+6t2–6)/(t+1)(t–6) ≥ 0
(t–7)(t3–6)/(t+1)(t–6) ≥ 0
__+__ (–1) __–__ [∛6] ____+___ (6) __–_ [7] _+__
C учетом t > 0 получаем ответ
[∛6;6) U[7;+ ∞ 0
Обратная замена
∛6 ≤ 4x < 6 или 4x ≥ 7
log4∛6 ≤ х < log_ (4) 6 или
х ≥ log4 7