x^2-4x+8=(x^2+4x+4)+4=(x+2)^2+4
Замена переменной
x+2=u
x=u-2
dx=du
= ∫ (u+1)du/(u^2+4)= ∫ udu/(u^2+4)+ ∫1*du/(u^2+4)=
=(1/2)ln |u^2+4|+arctg(u/2)+C=
= (1/2)ln |x^2+4x+8|+arctg((x-2)/2)+C
∫ (x-1)dx/(x^2-4x+8)= ∫( 1/2(2x-4)+1)*dx/(x^2-4x+8)=1/2 ∫ (2x-4)*dx/(x^2-4x+8)+ ∫dx/(x^2-4x+8)=1/2ln(x^2-4x+8)+ ∫ dx/((x-2)^2+2^2=1/2ln(x^2-4x+8)+arctg((x-2)/2)/2+c