✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 216 В правильной треугольной пирамиде SABC с

УСЛОВИЕ:

В правильной треугольной пирамиде SABC с вершиной S сторона основания равна 12, а боковое ребро наклонено к основанию под углом, квадрат тангенса которого равен 0,5. Найдите расстояние между ребрами АВ и SC.

РЕШЕНИЕ:

Искомое расстояние реализует общий перпендикуляр, соединяющий эти отрезки. В стереометрических задачах мы стремимся отыскать ту плоскость, в которой разворачиваются главные события сюжета задачи.

Пусть D — середина отрезка АВ. Рассмотрим плоскость SCD, в ней развернутся главные события в решении задачи. Прямая АВ перпендикулярна SCD, т. к. она перпендикулярна двум прямым SD и CD этой плоскости. Следовательно, высота DH в треугольнике SCD является тем самым общим перпендикуляром, длину которого нам надо найти. Зная тангенс угла, вычислим sin SCD =1/sqrt(3), и отсюда найдем DH = CD • sinSCD =12*sqrt(3)/2*1/sqrt(3)= 6.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

6

Добавил slava191, просмотры: ☺ 2162 ⌚ 05.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
log(5^3) sqrt(5) = 1/3 * 1/2 * log5 5 = 1/6 [удалить]
✎ к задаче 30334
log(4^2) 1/2 = log((1/2)^(-4)) 1/2 = -1/4 [удалить]
✎ к задаче 30317
(sqrt(3))^3=(3^(1/2))^(3)=3^(3/2)

log_(3)(sqrt(3))^3=log_(3)3^(3/2)=3/2
[удалить]
✎ к задаче 30331
log_(2)sqrt(2)=1/2,

так как 2^(1/2)=sqrt(2)
[удалить]
✎ к задаче 30330
(1/16)^(5)=(4^(-2))^(5)=4^(-10)

log_(4)(1/6)^5=log_(4)4^(-10)=-10
[удалить]
✎ к задаче 30329