✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 2121 Пусть f(x)=ax^2 + bx + 2, a<0 и

УСЛОВИЕ:

Пусть f(x)=ax^2 + bx + 2, a<0 и f(10)=0. Какое наибольшее количество целочисленных решений может иметь неравенство ax^4 + bx^2 + 2 > 0?

Добавил slava191, просмотры: ☺ 2041 ⌚ 01.11.2014. математика 10-11 класс

Решения пользователей

На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
41.1
1) f`(x)=(3x-sqrt(3))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(3x)`-(sqrt(3))`= постоянный множитель можно выносить за знак производной=
=3*(х)`-(sqrt(3))`= по таблице
=3*1-0=3
[b]f`(x)=3[/b] - о т в е т.

2)
f`(x)=(x^2+3x-sqrt(2))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(x^2)+(3x)`-(sqrt(2))`= постоянный множитель можно выносить за знак производной=
=(x^2)+3*(х)`-(sqrt(2))`= по таблице
=2x+3*1-0=2x+3
[b]f`(x)=2x+3[/b]- о т в е т.

3)
f`(x)=(5x^(-4)+2x-sqrt(5))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(5x^(-4))+(2x)`-(sqrt(5))`= постоянный множитель можно выносить за знак производной=
=5(x^(-4))+2*(х)`-(sqrt(5))`= по таблице
=5*(-4)*x^(-5)+2*1-0=(-20/x^5)+2
[b]f`(x)=(-20/x^5)+2[/b]- о т в е т.


41.6
1)
f`(x)=2x+1,2

f`(x) ≥ 0 ⇒ 2x+1,2 ≥ 0 ⇒ [b] x ≥ -0,6[/b]- о т в е т.

3)
f`(x)=5x^4+333x^3

f`(x) ≥ 0 ⇒ 5x^4+333x^3 ≥ 0 ⇒ x^3*(5x+333) ≥ 0- о т в е т. (- ∞;-333/5]U[0;+ ∞ )

__+___ [-333/5] ______ [0] ___+___

41.14
1)

f(x)=(2/x)-(x/2)

f(x)=2*(x^(-1))-(1/2)*x

f `(x)=2*(-1)*x^(-2)-(1/2)

f `(x)=(-2/x^2)-(1/2)

f `(1)=(-2)-(1/2)=-2,5

2)
f(x)=(5/x)-(x^2/2)-5

f(x)=5*(x^(-1))-(1/2)*x^2-5

f `(x)=5*(-1)*x^(-2)-(1/2)*2*x

f `(x)=(-5/x^2)-x

f `(-2)=(-5/4)-(-2)=3/4


✎ к задаче 53503
(прикреплено изображение)
✎ к задаче 53502
Пример2.
z=1-sqrt(3)*i

z=x+y*i

x=1; y=-sqrt(3)

|z|=sqrt(x^2+y^2)

|z|=sqrt(1^2+(-sqrt(3))^2)=sqrt(4)=2

arg z=arctg (y/x)+π, x >0; y <0

arg z=arctg(-sqrt(3))+π=-(π/3)+π=2π/3

1-sqrt(3)*i=2*(cos(2π/3)+isin(2π/3))

По формуле Муавра

(1-sqrt(3)*i)^(30)=2^(30)*(cos(2π/3)*30+isin(2π/3)*30)=2^(30)*(cos(20π)+isin(20π))

arg z^(30)=20π

cos(20π)=cos0=1
sin(20π)=sin0=0

(1-sqrt(3)*i)^(30)=2^(30) - о т в е т. в алгебраической форме

Пример3
z_{1}=3\cdot e^{\frac{2\pi}{3}\cdot i}

z_{2}=2\cdot e^{\frac{\pi}{3}\cdot i}

z_{1}\cdot z_{2}=3\cdot e^{\frac{2\pi}{3}\cdot i}\cdot 2\cdot e^{\frac{\pi}{3}\cdot i}=3\cdot 2 \cdot e^{\frac{2\pi}{3}\cdot i+\frac{\pi}{3}\cdot i}=6e^{\pi}=6(cos(\pi)+i\cdot sin(\pi))=-6\cdot (1+0i)

\frac{z_{1}}{ z_{2}}=\frac{3\cdot e^{\frac{2\pi}{3}\cdot i}}{2\cdot e^{\frac{\pi}{3}\cdot i}}=\frac{3}{2} \cdot e^{\frac{2\pi}{3}\cdot i-\frac{\pi}{3}\cdot i}=\frac{3}{2}\cdot e^{\frac{\pi}{3}\cdot i}=\frac{3}{2}\cdot (cos\frac{\pi}{3}+i\cdot sin\frac{\pi}{3})=

=\frac{3}{2}\cdot (\frac{1}{2}+i\cdot \frac{\sqrt{3}}{2})=\frac{3}{4}+i\cdot \frac{\sqrt{3}}{4}
✎ к задаче 53501
1)
функция u переводит х в (2x-1)
u: x → (2x-1)=u

функция f переводит u в u^2

f: (2x-1) → (2x-1)^2

f(u(x))=(2x-1)^2

2)
функция u переводит х в x^2
u: x → x^2=u

функция f переводит u в 2u-1

f: x^2 → (2x^2-1)

f(u(x))=2x^2-1

3)
функция u переводит х в (x-4)
u: x → (x-4)=u

функция f переводит u в sqrt(u)

f: (x-4) → sqrt(x-4)

f(u(x))=sqrt(x-4)

4)
функция u переводит х в sqrt(x)
u: x → sqrt(x)=u

функция f переводит u в sqrt(u)

f: sqrt(x) → sqrt(x)-4

f(u(x))=sqrt(x)-4

5)
функция u переводит х в (x^2-1)
u: x → x^2-1=u

функция f переводит u в 3-2sqrt(u)

f: x^2 -1 → 3-2sqrt(x^2-1)

f(u(x))= 3-2sqrt(x^2-1)

6)
функция u переводит х в (3-2sqrt(x))
u: x → 3-2sqrt(x)=u

функция f переводит u в (u^2-1)

f: 3-2sqrt(x) → (3-2sqrt(x))^2-1

f(u(x))=(3-2sqrt(x))^2-1
✎ к задаче 53500
15.7
1)
arccos 0=\frac{\pi}{2}, так как

cos\frac {\pi}{2}=0 и \frac {\pi}{2}\in [0;\pi ]

2)
arccos 1=0, так как

cos0=1 и 0\in [0;\pi ]

3)
arccos (-\frac{\sqrt{2}}{2})=\pi-arccos\frac{\sqrt{2}}{2}=\pi-\frac {\pi}{4}=\frac{3 \pi}{4}, так как
cos\frac {\pi}{4}=\frac{\sqrt{2}}{2} и \frac {\pi}{4}\in [0;\pi ]
и
cos\frac {3\pi}{4}=-\frac{\sqrt{2}}{2} и \frac {3\pi}{4}\in [0;\pi ]

4)
arccos (-\frac{\sqrt{3}}{2})=\pi-arccos\frac{\sqrt{3}}{2}=\pi-\frac {\pi}{6}=\frac{5 \pi}{6}, так как
cos\frac {\pi}{6}=\frac{\sqrt{3}}{2} и \frac {\pi}{6}\in [0;\pi ]
и
cos\frac {5\pi}{6}=-\frac{\sqrt{3}}{2} и \frac {5\pi}{6}\in [0;\pi ]

15.8

1)
arctg 1=\frac {\pi}{4}, так как
tg\frac {\pi}{4}=1 и \frac {\pi}{4}\in [-\frac {\pi}{2};\frac {\pi}{2}]

2)
arctg 0=0, так как
tg0=0 и 0 \in [-\frac {\pi}{2};\frac {\pi}{2}]

3)
arctg (-1)=-\frac {\pi}{4}, так как
tg(-\frac {\pi}{4})=-1 и -\frac {\pi}{4}\in [-\frac {\pi}{2};\frac {\pi}{2}]

4)
arctg (-\frac{\sqrt{3}}{3})=-\frac {\pi}{6}, так как
tg(-\frac {\pi}{6})=-\frac{\sqrt{3}}{3} и -\frac {\pi}{6}\in [-\frac {\pi}{2};\frac {\pi}{2}]


15.4
1)
arccos (-\frac{\sqrt{2}}{2})+arcsin(-\frac{1}{2})=\frac{3 \pi}{4}+(-\frac {\pi}{6})=-\frac {7 \pi}{12}

Так как
arccos (-\frac{\sqrt{2}}{2})=\pi - arccos\frac{\sqrt{2}}{2}=\pi-\frac {\pi}{4}=\frac{3 \pi}{4},

cos\frac {3\pi}{4}=-\frac{\sqrt{2}}{2} и \frac {3\pi}{4}\in [0;\pi ]

arcsin(-\frac{1}{2})=-\frac {\pi}{6},

sin(-\frac {\pi}{6})=-\frac{1}{2} и -\frac {\pi}{6}\in [-\frac {\pi}{2};\frac {\pi}{2}]


2)
arccos (-\frac{\sqrt{3}}{2})-arcsin(\frac{\sqrt{3}}{2})=\frac{5 \pi}{6}-\frac {\pi}{3}=\frac { \pi}{2}

3)
arccos(0,5)+arcsin(-1)=\frac{\pi}{3}-\frac {\pi}{2}=-\frac { \pi}{6}

4)
arccos (\frac{\sqrt{3}}{2})-arcsin(-\frac{\sqrt{2}}{2})=\frac{ \pi}{6}-(-\frac {\pi}{4})=\frac { 5\pi}{12}

15.17
1)
2arcsin \frac{\sqrt{3}}{2}-3arctg(-\frac{\sqrt{3}}{3})+arccos (-\frac{\sqrt{3}}{2})-2arctg(-1)=2\cdot \frac { \pi}{6} -3\cdot (-\frac { \pi}{6})+\frac{5 \pi}{6}-2\cdot (-\frac{ \pi}{4})=

=\frac{13 \pi}{6}

2)
arccos (-\frac{\sqrt{2}}{2})+2arctg(-\sqrt{3}+arcsin (-\frac{\sqrt{3}}{2})+arctg1= -\frac {3 \pi}{4}+2\cdot (-\frac {\pi}{3})+(-\frac {\pi}{3})+\frac {\pi}{4}=-\frac{3 \pi}{2}
(прикреплено изображение)
✎ к задаче 53499