✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 211 Найдите сумму наибольшего и наименьшего

УСЛОВИЕ:

Найдите сумму наибольшего и наименьшего значений функции у = 2 • |1 + 2cosx| - 5 • |1 - 4cos x|.

РЕШЕНИЕ:

Очень важно в непонятной ситуации попытаться переформулировать задачу, сделав ее стандартной. Прежде всего, напрашивается замена соs х = t. После этого функция у=2•|1 + 2t| - 5•|1 - 4t| может быть легко исследована исходя из следующих соображений. Во-первых, новый аргумент меняется от-1 до +1, т. е. принимает значения на отрезке. Следовательно, существуют наибольшее и наименьшее значения функции, которые принимаются в точках экстремума, или в граничных точках. Во-вторых, при любом раскрытии модулей функция будет линейной: возрастающей или убывающей. Но такие линейные функции сами по себе не имеют точек экстремума, и точки экстремума могут быть только в точках состыковки этих функций, т. е. в точках -0,5 и 0,25. Окончательно вычислим значения функции:
у(-1) = 2-25 = -23,
у(-0,5)=0-5*3 = -15,
y(0,25) = 2*1,5-0 = 3,
y(1) = 2*3-5*3 = -9.
Выбираем из этих значений функции наибольшее и наименьшее значения 3 и -23, их сумма, число -20, является ответом.

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

-20

Добавил slava191, просмотры: ☺ 1883 ⌚ 05.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
Все ребра образуют одинаковые углы с основанием, значит,
прямоугольные треугольники SOA; SOB и SOC равны по катету SO и острому углу.
Из равенства треугольников следует
АО=ОВ=ОС

Значит вершина пирамиды проектируется в центр описанной окружности.

AO=BO=CO=R

По теореме синусов
14/sin135^(o)=2R
R=7sqrt(2)

Треугольник SOA - прямоугольный с острым углом 45 градусов, значит он прямоугольный равнобедренный
Его катеты равны

H=R=7sqrt(2)
(прикреплено изображение) [удалить]
✎ к задаче 30302
AC^2=1,6^2+1,2^2=2,56+1,44=4
AC=2
OC=(1/2)AC=1

SO^2=SC^2-OC^2=2,6^2-1^2=5,76
SO=2,4
H=SO

V=(1/3)S(осн)*Н=(1/3)*1,6*1,2*2,4=1,536
(прикреплено изображение) [удалить]
✎ к задаче 30301
(прикреплено изображение) [удалить]
✎ к задаче 30300
Диагонали ромба взаимно перпендикулярны и в точке пересечения делятся пополам.
АО=ОС=8
ВО=ОD=6
По теореме Пифагора
АВ=sqrt(6^2+8^2)=10

S(ромба)=(1/2)*d_(1)*d_(2)=(1/2)*12*16=96

С другой стороны
S(ромба)=a*h
h=S/a=96/10=9,6

OK=(1/2)h=4,8


S(бок)=4S_( Δ)SDC)=4*(1/2)DC*DK
120=2*10*DK
DK=6 ( апофема боковой грани)

По теореме Пифагора из Δ SOK
SK=sqrt(6^2-(4,8)^2)=3,6
H(пирамиды)=SO

V=(1/3)*S(осн)*H=(1/3)*96*3,6=115,2

о т в е т. 115,2 см^3
(прикреплено изображение) [удалить]
✎ к задаче 30296
4.
ОДЗ: сosx > 0 ( значит х в первой или четвертой четвертях)

2сos^2x+2sinx*cos2x-1=0
2cos^2x-1=cos2x

cos2x+2sinx*cos2x=0
cos2x*(1+2sinx)=0
cos2x=0 ⇒ 2x=(π/2)+πk, k ∈ Z ⇒ x=(π/4)+(π/2)k, k ∈ Z
ОДЗ удовлетворяют корни в первой и четвертой четвертях:
± (π/4)+2πm, m ∈ Z

2) 1+2sinx=0
sinx=-1/2
x=(-1)^(n)*(-π/6)+πn, n ∈ Z
ОДЗ удовлетворяют корни в 4-ой четверти
х=(-π/6)+2πn, n ∈ Z

О т в е т. ± (π/4)+2πm, m ∈ Z
(-π/6)+2πn, n ∈ Z


5.
По формулам приведения
cos( (π/2) - x ) = sinx
sin( x + (π/2))= cosx
(3^(-2))^sinx=3^(2cosx)
3^(-2sinx)=3^(2cosx) ⇒
-2sinx=2cosx
tgx=-1
x=(-π/4)+πk, k ∈ Z

а) О т в е т. (-π/4)+πk, k ∈ Z

б) х=(-π/4)-2π=-9π/4
х=(-π/4)-3π=-13π/4

- два корня принадлежащих указанному отрезку.
[удалить]
✎ к задаче 30294