ЗАДАЧА 211 Найдите сумму наибольшего и наименьшего

УСЛОВИЕ:

Найдите сумму наибольшего и наименьшего значений функции у = 2 • |1 + 2cosx| - 5 • |1 - 4cos x|.

РЕШЕНИЕ:

Очень важно в непонятной ситуации попытаться переформулировать задачу, сделав ее стандартной. Прежде всего, напрашивается замена соs х = t. После этого функция у=2•|1 + 2t| - 5•|1 - 4t| может быть легко исследована исходя из следующих соображений. Во-первых, новый аргумент меняется от-1 до +1, т. е. принимает значения на отрезке. Следовательно, существуют наибольшее и наименьшее значения функции, которые принимаются в точках экстремума, или в граничных точках. Во-вторых, при любом раскрытии модулей функция будет линейной: возрастающей или убывающей. Но такие линейные функции сами по себе не имеют точек экстремума, и точки экстремума могут быть только в точках состыковки этих функций, т. е. в точках -0,5 и 0,25. Окончательно вычислим значения функции:
у(-1) = 2-25 = -23,
у(-0,5)=0-5*3 = -15,
y(0,25) = 2*1,5-0 = 3,
y(1) = 2*3-5*3 = -9.
Выбираем из этих значений функции наибольшее и наименьшее значения 3 и -23, их сумма, число -20, является ответом.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик
Почему аргумент меняется от -1 до +1 и откуда -0,5 и 0,25 взялись?(( ответить
опубликовать + регистрация в один клик
Потому что это область значений тригонометрической функции cosx
Показать имеющиеся вопросы (1)

ОТВЕТ:

-20

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1767 ⌚ 05.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

u821511235 ✎ Красота - страшная сила!!! к задаче 28527

u821511235 ✎ к задаче 28531

u821511235 ✎ к задаче 28528

u821511235 ✎ Потому что 3 * 27 = 81, а sqrt(81)=9. к задаче 28529

u821511235 ✎ к задаче 28525