✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 209 Найдите наибольшее значение функции y =

УСЛОВИЕ:

Найдите наибольшее значение функции y = 3sin(x)- 11x/Pi-31 на отрезке [-5Pi/2;0]

РЕШЕНИЕ:

Вычислим производную заданной функции у' = 3cosx-11/Pi . Так как, очевидно, Pi<11/3, то производная всегда отрицательна и функция на заданном промежутке убывает. Следовательно, наибольшее значение функция принимает на левой границе. Итак, искомое значение равно значению заданной функции в данной точке

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

-6,5

Добавил slava191, просмотры: ☺ 1516 ⌚ 05.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
log(5^3) sqrt(5) = 1/3 * 1/2 * log5 5 = 1/6 [удалить]
✎ к задаче 30334
log(4^2) 1/2 = log((1/2)^(-4)) 1/2 = -1/4 [удалить]
✎ к задаче 30317
(sqrt(3))^3=(3^(1/2))^(3)=3^(3/2)

log_(3)(sqrt(3))^3=log_(3)3^(3/2)=3/2
[удалить]
✎ к задаче 30331
log_(2)sqrt(2)=1/2,

так как 2^(1/2)=sqrt(2)
[удалить]
✎ к задаче 30330
(1/16)^(5)=(4^(-2))^(5)=4^(-10)

log_(4)(1/6)^5=log_(4)4^(-10)=-10
[удалить]
✎ к задаче 30329