ЗАДАЧА 201 В стеклянный сосуд цилиндрической формы

УСЛОВИЕ:

В стеклянный сосуд цилиндрической формы налили 200 мл воды. Уровень воды при этом достиг 6 см. В сосуд полностью погрузили изделие из металла желтого цвета, масса которого составляет 386,4 г. При этом уровень воды в сосуде поднялся на 0,6 см.
Найдите массу в граммах 1 кубического сантиметра изделия.

РЕШЕНИЕ:

Может быть, таким путем шел Архимед, проверяя, сделана ли из золота корона повелителя. Так как уровень воды в сосуде поднялся на десятую часть первоначальной высоты, то объем изделия из металла желтого цвета равен десятой части первоначального объема, т.е. 20 кубическим сантиметрам. Следовательно, масса в граммах 1 кубического сантиметра изделия равна 19,32 граммам, что совпадает с удельным весом золота.

ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

19,32

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1744 ⌚ 05.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk397114329 ✎ Решение: cosx=cos2x*cos3x cos2x*cos3x=1/2(cosx+cos5x); cosx-1/2(cosx)-1/2(cos5x)=0; 1/2(cosx)-1/2(cos5x)=0; cosx-cos5x=sin3x*sin2x=0 sin3x=0. отсюда 3x=Pik. x=Pik/3,k ∈ z 2) sin2x=0. x=Pik/2 Ответ:Piк/3, Piк/2 к задаче 22563

SOVA ✎ Формула cos альфа *cos бета =(1/2)*(cos( альфа + бета )+cos( альфа - бета )) cosx=(1/2)cos5x+(1/2)cosx (1/2)*(cos5x-cosx)=0 Формула cos альфа -cos бета=-2* sin(( альфа + бета )/2)*sin(( альфа - бета )/2) sin3x*sin2x=0 3x=Pik, k ∈ Z или 2х=Pin, n ∈ Z x=(Pi/3)k, k ∈ Z или х=(Pi/2)*n, n ∈ Z О т в е т. (Pi/3)k; (Pi/2)*n, k, n ∈ Z к задаче 22563

SOVA ✎ к задаче 22564

vk397114329 ✎ Решение: Из тождества sin^2x+cos^2x=1 найдем cosx=sgrt(1-sin^2x)=sgrt(1-0.64)=0.6 По определению cosA=AC/AB. отсюда АВ=AC/cosA. AB=9/0.6=15. Ответ 15 к задаче 11947

SOVA ✎ к задаче 22562