ЗАДАЧА 198 Денис подобрал на дороге тонкую палочку

УСЛОВИЕ:

Денис подобрал на дороге тонкую палочку и разломал ее на 3 части, причем обе точки излома были выбраны случайно. Найдите вероятность того, что из полученных трех палочек можно составить треугольник.

ОТВЕТ:

0,25

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1223 ⌚ 05.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.

РЕШЕНИЕ ОТ southpark

дениска ломает палку а 3 мелкие т.е делает из одной палки - 3. вероятность того, что он первый раз надломит палку в любом месте 1/2 = 0,5. Та же вероятность и для второго надлома. Эти два события не связаны, поэтому перемножаются и в ответе получается число 0,25. 1/2 потому что из одной палки получится две, один к двум. Объяснил как мог.
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk397114329 ✎ Решение: cosx=cos2x*cos3x cos2x*cos3x=1/2(cosx+cos5x); cosx-1/2(cosx)-1/2(cos5x)=0; 1/2(cosx)-1/2(cos5x)=0; cosx-cos5x=sin3x*sin2x=0 sin3x=0. отсюда 3x=Pik. x=Pik/3,k ∈ z 2) sin2x=0. x=Pik/2 Ответ:Piк/3, Piк/2 к задаче 22563

SOVA ✎ Формула cos альфа *cos бета =(1/2)*(cos( альфа + бета )+cos( альфа - бета )) cosx=(1/2)cos5x+(1/2)cosx (1/2)*(cos5x-cosx)=0 Формула cos альфа -cos бета=-2* sin(( альфа + бета )/2)*sin(( альфа - бета )/2) sin3x*sin2x=0 3x=Pik, k ∈ Z или 2х=Pin, n ∈ Z x=(Pi/3)k, k ∈ Z или х=(Pi/2)*n, n ∈ Z О т в е т. (Pi/3)k; (Pi/2)*n, k, n ∈ Z к задаче 22563

SOVA ✎ к задаче 22564

vk397114329 ✎ Решение: Из тождества sin^2x+cos^2x=1 найдем cosx=sgrt(1-sin^2x)=sgrt(1-0.64)=0.6 По определению cosA=AC/AB. отсюда АВ=AC/cosA. AB=9/0.6=15. Ответ 15 к задаче 11947

SOVA ✎ к задаче 22562