✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 198 Денис подобрал на дороге тонкую палочку

УСЛОВИЕ:

Денис подобрал на дороге тонкую палочку и разломал ее на 3 части, причем обе точки излома были выбраны случайно. Найдите вероятность того, что из полученных трех палочек можно составить треугольник.

ОТВЕТ:

0,25

Добавил slava191, просмотры: ☺ 1803 ⌚ 05.01.2014. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ southpark

дениска ломает палку а 3 мелкие т.е делает из одной палки - 3. вероятность того, что он первый раз надломит палку в любом месте 1/2 = 0,5. Та же вероятность и для второго надлома. Эти два события не связаны, поэтому перемножаются и в ответе получается число 0,25. 1/2 потому что из одной палки получится две, один к двум. Объяснил как мог.

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
E=kA^2/2 ⇒ A=sqrt(2E/k)
T=2πsqrt(m/k)
Vm=A*ω
ω=sqrt(k/m)
✎ к задаче 41612
T=2πsqrt(m/k) ⇒ m=(T/2π)^2k
T=13/35=0,37
✎ к задаче 41611
По формуле Тейлора с остаточным членов в форме Пеано:

sinx=x-(x^3/3!)+o(x^4)
tgx=x+(x^3/3) +о(x^4)

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{x-(x-\frac{x^3}{3!}+o(x^4))}{x-(x+\frac{x^3}{3}+o(x^4))}=\lim_{x \to 0 }\frac{\frac{x^3}{3!}+o(x^4))}{-\frac{x^3}{3}-o(x^4))}=\frac{\frac{1}{3!}+0}{-\frac{1}{3}+0}=-\frac{1}{2}

2 способ Правило Лопиталя

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{(x-sinx)`}{(x-tgx)`}=\lim_{x \to 0 }\frac{1-cosx}{1-\frac{1}{cos^2x}}=\lim_{x \to 0 }\frac{1-cosx}{\frac{cos^2x-1}{cos^2x}}=

=\lim_{x \to 0 }\frac{-1\cdot cos^2x}{cosx+1}=-\frac{1}{2}

(прикреплено изображение)
✎ к задаче 41610
При x → + ∞
(2)^(+ ∞ )=+ ∞

При x →- ∞
(2)^(- ∞ )=0
✎ к задаче 41609
(х-8)-2=8,
х-8=8+2,
х-8=10,
х=10+8,
х=18.
Ответ: 18.
✎ к задаче 41608