ЗАДАЧА 19589 Найдите производную сложной функции f(x)

УСЛОВИЕ:

Найдите производную сложной функции f(x) = корень 3ей степени из ln(1-x)

РЕШЕНИЕ ОТ slava191:

(1 / 3*корень_3ей_степени из (ln(1-x)) ) * (1/(1-x)) * (-1)
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

Нужна помощь?

Опубликовать

Добавил U8323424619 , просмотры: ☺ 67 ⌚ 15.11.2017. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.

РЕШЕНИЕ ОТ u1452559144

y=10корень x
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ к задаче 21122

SOVA ✎ 700:100*15=7*15=105 руб составляют 15% 700+105=805 рублей будет на счете к задаче 21125

SOVA ✎ См. рисунок. Прямая пересекает ось Оу в точке (0;-6) ось Ох в точке (2;0) И отсекает треугольник АОВ с катетами ОА=6 ОВ=2 S=(1/2)OA*OB=(1/2)*6*3=9 О т в е т. 9 к задаче 21127

SOVA ✎ По формулам приведения sin(π+x)=-sinx -2sinx=2sinx*cosx-3sin^3x 3sin^3x-2sinx*cosx-2sinx=0 sinx*(3sin^2x-2cosx-2)=0 sinx=0 или 3sin^2x-2cosx-2=0 sinx=0 ⇒ x=Pik, k ∈ Z 3sin^2x-2cosx-2=0 ⇒ 3*(1-cos^2x)-2cosx-1=0 3cos^2x+2cosx-1=0 D=4-4*3*(-1)=16 cosx=-1 или cosx=1/3 x=π+2πm, m∈Z или х=± arccos(1/3)+2πn, n∈Z О т в е т. а) Pik, π+2πm ± arccos(1/3)+2πn k,m,n∈Z б) указанному промежутку принадлежат корни -Pi;0;Pi; 2Pi -arccos(1/3);-arccos(1/3)+2π; arccos(1/3) к задаче 21133

tyzyaca ✎ А-3 (получаем пропЕН) Б-4 (получаем кетон) В-5 (получаем пропАН) Г-1 (получаем 2-метилпропан) к задаче 21077