ЗАДАЧА 191 По итогам полугодия из 25 учеников

УСЛОВИЕ:

По итогам полугодия из 25 учеников класса 6 учеников стали отличниками, 8 — хорошистами, 9 троечниками. Найдите, какова вероятность того, что наудачу выбранный ученик класса имеет по итогам полугодия хотя бы одну неудовлетворительную оценку.

РЕШЕНИЕ:

У нас одинаковая возможность выбрать любого из 25 учеников класса. Вероятностью является отношение числа благоприятных исходов к числу всех возможных равновероятных исходов. Двоечников в классе двое. Благоприятными с точки зрения условия задачи являются варианты, когда выбирается неуспевающий школьник. Таких вариантов 2. Для получения правильного ответа надо число 2 поделить на число 25.

ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик
2 делим на 25 равно 0,08 Ответ:0,08 а не 25 как у вас,в половине задач ответы неправильные ответить
опубликовать + регистрация в один клик
Ошибка по невнимательности, с кем не бывает. Насчет половины задач, вы явно погорячились
Показать имеющиеся вопросы (1)

ОТВЕТ:

0,08

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1709 ⌚ 05.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk397114329 ✎ Решение: cosx=cos2x*cos3x cos2x*cos3x=1/2(cosx+cos5x); cosx-1/2(cosx)-1/2(cos5x)=0; 1/2(cosx)-1/2(cos5x)=0; cosx-cos5x=sin3x*sin2x=0 sin3x=0. отсюда 3x=Pik. x=Pik/3,k ∈ z 2) sin2x=0. x=Pik/2 Ответ:Piк/3, Piк/2 к задаче 22563

SOVA ✎ Формула cos альфа *cos бета =(1/2)*(cos( альфа + бета )+cos( альфа - бета )) cosx=(1/2)cos5x+(1/2)cosx (1/2)*(cos5x-cosx)=0 Формула cos альфа -cos бета=-2* sin(( альфа + бета )/2)*sin(( альфа - бета )/2) sin3x*sin2x=0 3x=Pik, k ∈ Z или 2х=Pin, n ∈ Z x=(Pi/3)k, k ∈ Z или х=(Pi/2)*n, n ∈ Z О т в е т. (Pi/3)k; (Pi/2)*n, k, n ∈ Z к задаче 22563

SOVA ✎ к задаче 22564

vk397114329 ✎ Решение: Из тождества sin^2x+cos^2x=1 найдем cosx=sgrt(1-sin^2x)=sgrt(1-0.64)=0.6 По определению cosA=AC/AB. отсюда АВ=AC/cosA. AB=9/0.6=15. Ответ 15 к задаче 11947

SOVA ✎ к задаче 22562