✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 188 В прямоугольном параллелепипеде

УСЛОВИЕ:

В прямоугольном параллелепипеде ABCDA1B1С1D1, выполнены соотношения: АВ=12, ВС = 4, АА1 = 5. Найдите площадь треугольника АС1D.

РЕШЕНИЕ:

Площадь прямоугольного треугольника АС1D равна половине произведения его катетов AD = 4 и С1D. В то же время отрезок C1D является гипотенузой в прямоугольном треугольнике CC1D с катетами CD = 12 и СС1 = 5, т. е. равен 13. Следовательно, искомая площадь равна 26.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

26

Добавил slava191, просмотры: ☺ 2148 ⌚ 05.01.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 41454
(прикреплено изображение)
✎ к задаче 41455
(прикреплено изображение)
✎ к задаче 41444
(прикреплено изображение)
✎ к задаче 41447
ln(u/v)=lnu-lnv


y`=\frac{1}{\sqrt{2}}(ln(\sqrt{2+2x}-\sqrt{2-x})-ln(\sqrt{2+2x}-\sqrt{2-x}))`

Применяем правило (lnt)`=t`/t

y`=\frac{1}{\sqrt{2}}\frac{(\sqrt{2+2x}-\sqrt{2-x})`}{\sqrt{2+2x}-\sqrt{2-x}}-\frac{1}{\sqrt{2}}\frac{(\sqrt{2+2x}+\sqrt{2-x})`}{\sqrt{2+2x}+\sqrt{2-x}}
Применяем формулу:

(\sqrt{u})`=\frac{u`}{2\sqrt{u}}

y`=\frac{1}{\sqrt{2}}\frac{\frac{2}{2\sqrt{2+2x}}+\frac{1}{2\sqrt{2-x}}}{\sqrt{2+2x}-\sqrt{2-x}}-\frac{1}{\sqrt{2}}\frac{\frac{2}{2\sqrt{2+2x}}-\frac{1}{2\sqrt{2-x}}}{\sqrt{2+2x}+\sqrt{2-x}}

В принципе это ответ.
Но можно упростить, привести к общему знаменателю в каждом числителе, потом к общему знаменателю в скобках. Может что и сократится.




✎ к задаче 41446