ЗАДАЧА 184 Прямая y = 7-9x параллельна касательной

УСЛОВИЕ:

Прямая y = 7-9x параллельна касательной к графику функции y= x^3+4x^2-5х-11. Найдите целочисленную абсциссу точки касания.

РЕШЕНИЕ:

Если касательная задана в виде у=kх+b, то ее угловой коэффициент равен k. При параллельном переносе угловой коэффициент прямой не меняется. По геометрическому смыслу производной угловой коэффициент данной касательной равен значению производной заданной функции y = х^3 + 4х^2- 5х - 11, т.е. для определения искомой абсциссы справедливо уравнение 3х^2 + 8x - 5 = -9. Корни уравнения 3x^2 + 8x + 4 = 0 равны -2/3 и -2. Целочисленное значение -2 запишем в ответе.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

-2

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 2063 ⌚ 03.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ ОДЗ: {8x^2+24x-16 > 0 ⇒ 8*(x^2+3x-2) > 0 ⇒ D=17;x =(-3 ±√17)/2 {x^4+6x^3+9x^2 > 0 ⇒ x^2(x^2+6x+9) > 0 ⇒ x^2*(x+3)^2 > 0⇒x≠ 0 и х≠ -3 {x^2+3x-10 ≠0⇒ D= 49; x≠ -5 и х≠ 2 x^2+3x-2 > 0 D=9-4*(-2)=17 x_(1)=(-3-sqrt(17))/2 или x_(2)=(-3+sqrt(17))/2 ОДЗ (- бесконечность ;-5)U(-5;(-3-sqrt(17))/2)U((-3+sqrt(17))/2;2)U(2;+ бесконечность ) log_(0,5)(8x^2+24x-16)=log_(2)(8*(x^2+3x-2))/log_(2)0,5= =-log_(2)8(x^2+3x-2) Тогда log_(0,5)(8x^2+24x-16)+log_(2)(x^4+6x^3+9x^2)= =-log_(2)(8*(x^2+3x-2))+log_(2)x^2(x+3)^2= =log_(2)(x^2*(x+3)^2/(8*(x^2+3x-2)))= =log_(2)(x*(x+3))^2/(8*(x^2+3x-2)= =log_(2)(x^2+3x)^2/(8*(x^2+3x-2)) Неравенство принимает вид: (log_(2)(x^2+3x)^2/(8*(x^2+3x-2)))/(x^2+3x-10) больше или равно 0 Замена переменной x^2+3x=t (log_(2)t^2/(8t-16))/(t-10) больше или равно 0 Неравенство равносильно двум системам 1) {log_(2)(t^2)/(8t-16) больше или равно 0 {x^2+3x-10 > 0 или 2) {log_(2)(t^2)/(8t-16) меньше или равно 0 {x^2+3x-10 < 0 Решаем первое неравенство: {log_(2)(t^2)/(8t-16) больше или равно 0 (2-1)*((t^2/(8t-16))-1)больше или равно 0 (t^2-8t+16)/(8t-16) больше или равно 0 так как t^2-8t+16 > 0 при любом t ⇒ 8t-16 > 0 ⇒ t > 2 ⇒ x^2+3x-2 > 0 1) {x^2+3x-2 > 0 ( см. ОДЗ) { D=49 x∈ (-∞; -5)U(2;+∞) 2) {(x^2+3x-2 < 0 - противоречит ОДЗ {x∈ (-5;2) Cистема не имеет решений С учетом ОДЗ О т в е т. ( (-∞; -5)U(2;+∞) к задаче 26636

u821511235 ✎ к задаче 26638

SOVA ✎ y(0)=-3 - 3 = (0^3/6)-sin0+C_(1)0+C_(2) ⇒ С_(2) = - 3 y`= (x^2/2)-cosx + C_(1) y`(0)=0 0=(0/2)-cos0+C_(1) C_(1)=1 О т в е т. С_(1)=1; С_(2)=-3 к задаче 26617

SOVA ✎ ∠ ABD=34^(o) - вписанный угол измеряется половиной дуги, на которую он опирается ∠ BDC=36^(o) ∠ BEC=∠ ABD+ ∠ BDC=34^(o)+36^(o)=70^(o) - внешний угол треугольника BED к задаче 26634

SOVA ✎ -х-3=-x^2+3 x^2-x-6=0 D=1+24=25 x_(1)=(1-5)/2=-2 или х_(2)=(1+5)/2=3 у_(1)=-х_(1)-3=-(-2)-3=-1 или у_(2)=-х_(2)-3=-3-3=-6 (-2;-1) или (3;-6) О т в е т. А (-2;-1) к задаче 26633