ЗАДАЧА 164 На рисунке показана стоимость одной

УСЛОВИЕ:

На рисунке показана стоимость одной акции предприятия в рублях в течение недели биржевых торгов. Определите максимальный доход в рублях, который можно было получить за этот период, имея в начале недели 500 рублей.

РЕШЕНИЕ:

Не надо думать, что так легко зарабатываются деньги на
биржевых торгах. Но в этой условной ситуации мы используем все
возможности «купить подешевле — продать подороже». В первый
день на 500 рублей покупаем 50 акций по 10 рублей. Во второй день
продаем их по 30 рублей за штуку. В третий день на полученные
1500 рублей мы покупаем 100 акций по 15 рублей. Заключительная
сделка произойдет в четвертый день, 100 акций будут проданы по
30 рублей. Вычитая из полученных в итоге 3000 рублей те 500
рублей, которые были вначале, вычисляем доход — 2500 рублей.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

2500

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 2069 ⌚ 03.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk141350086 ✎ 87–а=19 +28 -а=47-87 -а=-40 а=40 Ответ: 40 к задаче 19832

vk141350086 ✎ Биологические характеристики, а вариантов нет? Вроде так должно быть к задаче 19842

vk141350086 ✎ 1/ (5^x + 31) ≤ 4/(5*5^x - 1); 5^x = t > 0; введем новую переменную, пусть будет t 1/(t + 31) ≤ 4/(5t - 1); 1/(t+31) - 4 / (5t - 1) ≤ 0; подставили t, теперь приведем к общему знаменателю. (5t - 1 -4(t+31)) / (t+31)*(5t-1) ≤ 0; (5 t - 1 - 4 t - 124) / (t+31)*(5t - 1) ≤ 0; (t - 125) /(t+31)(5t-1) ≤ 0; находим нули числителя и знаменателя. Решаем методом интервалов, Точку х = 125 закрашиваем, точки х= - 31 и х = 1/5 пустые. t = 125; t = - 31; t = 1/5. - + - + ____(-31)_____(1/5)_______[125]_______t Так как по условию t > 0 (показательная функция; ⇒ 1/5 < t ≤ 125; 1/5 < 5^x ≤ 125; 5^(-1) < 5^x ≤ 5^3; 5 > 1; ⇒ - 1 < x ≤ 3. Ответ х ∈( - 1; 3]. Можно конечно иначе, но там считать вручную сложнее.Этот метод на мой взгляд проще. к задаче 7214

slava191 ✎ log3 x = log7 sqrt(81)*2 log3 x = log7 18 x = 3^(log7 18) к задаче 19825

u8083234255 ✎ к задаче 19824