Пусть
log2x=t;
log232х=log232+log2x=5+t;
log2x16=16log2|x|=[ c учетом ОДЗ х > 0, |x|=x]=
16log2x=16t
Неравенство принимает вид:
((5+t)/(t–5))+(t–5)/(5+t) ≥ (16t+18)/(t2–25)
или
((t+5)2+(t–5)2)–16t–18)/((t–5)(t+5)) ≥ 0;
(2t2–16t+32)/(t–5)(t+5) ≥ 0;
2·(t–4)2/((t–5)·(t+5)) ≥ 0.
_+__ (–5) _–_[4]_–_ (5) _+__
log2x < – 5 или log2x=4 или log2x > 5
0 < x < 1/(32) или х=16 или х > 32
О т в е т. (0; 1/(32)) U{16}U(32; + ∞)