ЗАДАЧА 162 На рисунке показана стоимость одной

УСЛОВИЕ:

На рисунке показана стоимость одной акции предприятия в рублях в течение недели биржевых торгов. Определите доход в рублях, который можно получить, если на этой неделе купить и продать 80 акций.

РЕШЕНИЕ:

При выполнении этого задания надо обратить внимание на тот факт, что выгоднее всего купить акции во второй день по минимальной цене 2 рубля за акцию, а продать их в пятый день по максимальной цене 14 рублей за акцию. Умножив доход на каждой акции 12 рублей на 80, получим ответ.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

960

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 2783 ⌚ 03.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

Kadridin11 ✎ x(2x-5)=0 x=0 и x=5/2 к задаче 22648

SOVA ✎ DA имеет длину 11 =12-1 4+1=5 11:5=2,2 в одной части 2,2*4=8,8 первой части ( в АК) 1+8,8=9,8 - координата точки К к задаче 22649

SOVA ✎ Раскладываем левую часть уравнения на множители 2х*(х-5)=0 х=0 или х=5 к задаче 22648

vk35978205 ✎ количество молей фтора n=N/Na=4,515*10^23/6,02*10^23= 0.75 моль V=Vm*n=22.4*0.75=16.8 л к задаче 22591

SOVA ✎ По условию парабола у=2x^2+ax+b пересекает ось Ох дважды, т.е квадратное уравнение 2x^2+ax+b=0 имеет два корня х_(о) и х_(D) 2x^2_(o)+ax_(o) +b=0 2х^2_(D)+ax_(D)+b=0 вычтем 2(x^2_(o)-x^2_(D))+а*(x_(o)-x_(D))=0 ((x_(o)-x_(D))*(2x_(o)+2x_(D)+а)=0 x_(o)-x_(D)≠0, точки по условию различны. Значит 2x_(o)+2x_(D)+а=0 (x_(o)+x_(D))=-a/2 (# 1) точка касания расположена на оси Ox, значит (x_(o);0) Составим уравнение касательной к параболе у=2x^2+ax+b. f(x)=2x^2+ax+b f(x_(o))=0, f`(x)=4x+a f`(x_(o))=4x_(o)+a y-0=(4х_(о)+a)*(x-x_(o)) - уравнение касательной к первой параболе. Составим уравнение касательной к параболе у=2x^2+ax+b. f(x)=-5x^2+сx+d f(x_(o))=0, f`(x)=-10x+c f`(x_(o))=-10x_(o)+c y-0=(-10х_(о)+c)*(x-x_(o)) - уравнение касательной ко второй параболе. Касательная общая, значит 4х_(о)+a=-10х_(о)+c ( угловые коэффициенты равны) 14x_(o) + a - c =0 x_(o)=(c-a)/14 ( # 2) У точек А;В и D - одинаковые абсциссы. Найдем ординаты. Точка А лежит на второй параболе Точка В на касательной А(x_(D);-5x^2_(D)+cx_(D)+d) В(х_(D);(4х_(о)+a)(x_(D)-x_(o)) D(х_(D); 0) |AD|=|-5x^2_(D)+cx_(D)+d| -5x^2_(o)+сx_(o) +d=0 d=5x^2_(o)-сx_(o) |AD|=|-5x^2_(D)+cx_(D)+5x^2_(o)-сx_(o)|= =|x_(o)-x_(D)|*|5x_(o)+5x_(D)-c| |ВD|=|x_(o)-x_(D)|*|4x_(o)+a| |DА|:|DВ|=|5x_(o)+5x_(D)-c|/|4x_(o)+a| так как (x_(o)+x_(D))=-a/2 ( # 1) x_(o)=(c-a)/14 ( # 2) |DА|:|DВ|=|5x_(o)+5x_(D)-c|/|4x_(o)+a|= =|5*(-a/2)-c|/|(4*(c-a)/14)+a|= =|(-5a-2c)/2|/|(2c+5a)/7|=7/2 О т в е т. 7/2 к задаче 22644