Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 15609 Постройте график функции y=(1/2)(|x/5,5...

Условие

Постройте график функции y=(1/2)(|x/5,5 – 5,5/x| + x/5,5 + 5,5/x) и определите, при каких значениях m прямая у = m имеет с графиком ровно одну общую точку.

математика 8-9 класс 19962

Решение

Если
1)(x/5,5) – (5,5/x) ≥ 0, то
|(x/5,5) – (5,5/x)|=(x/5,5) – (5,5/x)
y=(1/2)·(2x/5,5)=x/5,5

(x/5,5) – (5,5/x) ≥ 0
(x2–(5,5)2)/(5,5·x) ≥ 0

решаем неравенство методом интервалов:
_–__ [–5,5] __+__ (0) ___–__ [5,5] ___+__

Строим график у=х/5,5 при
x∈[–5,5;0)U[5,5;+∞)

2)1)(x/5,5) – (5,5/x) < 0, то
|(x/5,5) – (5,5/x)|=–(x/5,5) + (5,5/x)
y=(1/2)·(2·5,5)/(x)=5,5/x

(x/5,5) – (5,5/x) < 0
(x2–(5,5)2)/(5,5·x) < 0

решаем неравенство методом интервалов:
_–__ (–5,5) __+__ (0) ___–__ (5,5) ___+__

Строим график у=5,5/x при
x∈(–∞;–5,5)U(0;5,5)

Cм. рисунок

О т в е т. m=–1 или m=1

Обсуждения
Вопросы к решению (1)

Написать комментарий

Меню

Присоединяйся в ВК