✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 155 По плану одной бригаде нужно изготовить

УСЛОВИЕ:

По плану одной бригаде нужно изготовить на 900 изделий больше, чем другой за то же самое время. Чтобы каждая бригада выполнила свой план на 2 дня раньше, в первую бригаду добавили трёх рабочих, а во вторую – двух рабочих. Сколько рабочих было в каждой бригаде во время работы, если каждый из них изготовлял в среднем по 15 изделий в день?

Добавил slava191, просмотры: ☺ 1778 ⌚ 03.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!

РЕШЕНИЕ ОТ Гость

Ошибка в ответе.
t(x–y)=60 (x–y)=60/t, а не 120/t

x,y - кол-во рабочих по плану
t - время по плану
Составляем систему из трех уравнений:
(x+3)(t-2)=xt
(y+2)(t-2)=yt
15xt-15yt=900
Преобразовываем:
3t-2x=6
2t-2y=4
t(x-y)=60
Затем второе ур-ние вычитаем из первого и получаем:
t-2(x-y)=2
Вместо x-y подставляем 120/t:
t-120/t=2 умножаем на t
t^2-2t-120=0
По т. Виета:
t1+t2=2
t1*t2=120
t1=12, t2=-10 (не подходит), следовательно
t=12
Подставляем это значение в ур-ния,приведенные выше и получаем:
x=15, а y=10

Вопрос к решению?
Нашли ошибку?

Написать комментарий

Последнии решения
(прикреплено изображение) [удалить]
✎ к задаче 31880
Область определения (- ∞ ;-2) U (-2;2) U(2;+ ∞ )

y`= ((x^3)`*(x^2-4)-x^3*(x^2-4)`)/(x^2-4)^2

y`=((3x^2*(x^2-4)-x^3*(2x))/(x^2-4)^2

y`=(x^4 -12x^2)/(x^2-4)^2

y`=0

x^4 - 12x^2=0
x^2*(x^2-12)=0 ⇒
x^2 = 0 или x^2=12
x=0 или х = ± 2sqrt(3)

Знак производной:
__+___ (-2sqrt(3)) _-_ (-2) __-__ (0) _-__ (2) __-__ (2sqrt(3)) __+__

Функция монотонно убывает на (-2sqrt(3); - 2) и на (-2; 2 ) и на (-2; -2sqrt(3))
Функция монотонно возрастает
на (- ∞ ;-2sqrt(3)) и на (2sqrt(3);+ ∞ )

x=-2sqrt(3) - точка максимума
f(-2sqrt(3))=(-2sqrt(3))^2/((-2sqrt(3))^2-4)= -3sqrt(3)

х=2sqrt(3) - точка минимума
f(2sqrt(3))=(2sqrt(3))^2/((2sqrt(3))^2-4)= 3sqrt(3)
(прикреплено изображение) [удалить]
✎ к задаче 31884
dy=f`(x)*dx
dy=2^(cosx)*(cosx)`*ln2dx
dy=(-2ln2)sinx*2^(cosx)dx

dy=(-ln2)sinx*2^(cosx + 1)dx
[удалить]
✎ к задаче 31882
Имеем неопределенность ∞ ^(0).

Логарифмируем данную функцию
lny= x^2*ln(1/x)

Находим предел функции

z=lny

lim_(x→0)z=lim_(x→0) x^2*ln(1/x) = (неопределенность 0* ∞) сводится в неопределенности (0/0) или ( ∞ / ∞ ) и тогда можно применить правило Лопиталя.

lim_(x→0) x^2*ln(1/x)= lim_(x→0) (ln(1/x))/(1/x^2)= ( ∞ / ∞ )

=lim_(x→0) (ln(1/x)) `/(1/x^2) ` = lim_(x→0) (1/(1/x))*(1/x)`/(-2/x^3)=

= lim_(x→0) (1/(1/x))*(1/x)`/(-2/x^3)= lim_(x→0)(-x^2/2)= 0

lim_(x→0)z=0

Значит lim_(x→0) ln y =0 ⇒ lim_(x→0)y = e^(0)=1

О т в е т. 1
[удалить]
✎ к задаче 31883
(прикреплено изображение) [удалить]
✎ к задаче 31890