α=π/8
√2· (cos2(π/8)–sin2(π/8))=√2cos(2·(π/8))=
=√2·cos(π/4)=√2·(√2/2)=1
4.
1) α+β=0 – неверно, так как
–π/2 < α < 0
π < β < π/2
π/2 < α+β < π/2
2) cosα > 0
cos β < 0
cosα > cosβ – верно
3) –π/2 < α < 0
–π < – β < –π/2
Cкладываем:
–3π/2 < α – β < – π/2
α – β = 2 π – неверно
4) sinα =–sin β
sinα + sin β = 0 – верно
√2·((cos(pi/8)2)–(sin(pi/8)2))=√2· cos(pi/4)=√2·(√2/2)=2/2=1
4.
2 4