1)∫(45х-54)^-3/5 dx
2)∫18/(6t-15) dt
3)∫1/((3+5x)^2) dx
4)∫sin(3x/7+4/7)dx
5)∫(cos2x/sinx*cosx)dx
=(1/45)*(45x-54)^((-3/5)+1)/((-3/5)+1)+C=
=(1/18)(45x-54)^(2/5) +C;
2)∫18/(6t–15) dt=18*(1/6)∫d(6t-15)/(6t–15)=3ln|6t-15|+C;
3)∫1/((3+5x)^2) dx=(1/5)∫d(3+5x)/(3+5x)^2=
=(1/5)∫(3+5x)^(-2)d(3+5x)=
=(1/5)*((3+5x)^(-2+1)/(-2+1))+C=
=-(1/5)*(1/(3+5x) +C;
4)∫sin((3x/7)+(4/7))dx=
=(7/3)*∫sin((3x/7)+(4/7))d((3x/7)+(4/7))=
=(7/3)*(-cos((3x/7)+(4/7)))+C=
=(-7/3)*cos((3x/7)+(4/7))+C;
5)∫(cos2x/sinx·cosx)dx=(1/2)*2*∫d(sin2x)/(sin2x)=
=ln|sin2x|+C, так как
d(sin2x)=(sin2x)`dx=cos2x*(2x)`dx=2cos2x