3logx–2(8–x)+1 ≤ (1/4)log2x–2(x2–10x+16)2
{8–x > 0;⇒ x < 8
{x–2 > 0;⇒x > 2
{x–2≠1;⇒x≠3
{(x2–10x+16)2 > 0:⇒ x2–10x+16 ≠0⇒ x≠2; x≠8
x∈(2;3)U(3;8)
x2–10x+16=(x–2)(x–8)
logx–2(x2–10x+16)2=2logx–2|x2–10x+16|=
=2logx–2|(x–2)·(x–8)|
log2x–2(x2–10x+16)2=
(2logx–2|x2–10x+16|)2=4log2x–2|x2–10x+16|
|x2–10x+16|=|(x–2)(x–8)|=|x–2|·|x–8|
log2x–2|x2–10x+16|=(logx–2|x–2|+logx–2|x–8|)2
В условиях ОДЗ
х–2 > 0 значит |x–2|=x–2
x–8 < 0 значит |x–8|=8–x
Неравенство принимает вид:
3logx–2(8–x)+1 ≤ (1+logx–2(8–x))2
или
3logx–2(8–x)+1 ≤ 1+2logx–2(8–x)+log2x–2(8–x)
log2x–2(8–x)–logx–2(8–x)≥0
t2–t≥0, где t=logx–2(8–x)
t(t–1)≥0 ⇒ t ≤0 или t ≥1
logx–2(8–x) ≤0 или logx–2(8–x)≥1
logx–2(8–x) ≤logx–21 или logx–2(8–x)≥ logx–2(x–2)
Применяем метод рационализации логарифмических неравенств:
(х–2–1)(8–х–1)≤0 или (x–2–1)(8–x–x+2)≥0
(х–3)(7–х)≤0 или (x–3)(10–2x)≥0
(–∞;3]U[7;+∞) или [3;5]
С учетом ОДЗ получаем ответ
(2;3)U(3;5]U[7;8)