u=x
v=sqrt(1+arcsinx^2)*sqrt(1-x^2)
u`=x`=1
v`=(sqrt(1+arcsinx^2)*sqrt(1-x^2))`=
=(sqrt(1+arcsinx^2))`*sqrt(1-x^2)+sqrt(1+arcsinx^2)*(sqrt(1-x^2))`=
=(1/(2*sqrt(1+arcsinx^2)))*(1+arcsinx^2)`*sqrt(1-x^2)+sqrt(1+arcsinx^2)*(1/2sqrt(1-x^2))(1-x^2)`=
=(sqrt(1-x^2)*(x^2)`)/(2*sqrt(1+arcsinx^2)*sqrt(1-(x^2))^2)+
+sqrt(1+arcsinx^2)*(1/(2*sqrt(1-x^2)))*(1-x^2)`=
=(x*sqrt(1-x^2))/(sqrt(1+arcsinx^2)*sqrt(1-(x^2))^2)+
+sqrt(1+arcsinx^2)*(1/(2*sqrt(1-x^2)))*(1-x^2)`=
=(x*sqrt(1-x^2))/(sqrt(1+arcsinx^2)*sqrt(1-(x^2))^2)+
-x*sqrt(1+arcsinx^2)*(1/sqrt(1-x^2))
О т в е т.
(sqrt(1+arcsinx^2)*sqrt(1-x^2)-x^2*sqrt(1-x^2))/(sqrt(1+arcsinx^2)*sqrt(1-(x^2))^2)+
+x^2sqrt(1+arcsinx^2)*(1/sqrt(1-x^2)) и это все
делим на
v^2=(1+arcsinx^2)*(1-x^2)