✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 1417 Най­ди­те уг­ло­вой ко­эф­фи­ци­ент

УСЛОВИЕ:

Най­ди­те уг­ло­вой ко­эф­фи­ци­ент пря­мой, за­дан­ной урав­не­ни­ем 3x + 4y = 6.

Добавил Гость, просмотры: ☺ 4272 ⌚ 04.06.2014. предмет не задан класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ slava191

4y=-3x+6
y=-3/4x+6/4
k=-3/4
Ответ -0.75

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 53335
(прикреплено изображение)
✎ к задаче 53334
(прикреплено изображение)
✎ к задаче 53333
У призмы два основания, в основаниях призмы лежат n-угольники. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.

Количество вершин одного основания равно n. Количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.

2n - четное, т.к. кратно 2.


У призмы два основания, в основаниях призмы лежат n-угольники.
n-угольник имеет n сторон, они являются ребрами призмы.

n ребер в одном n-угольнике и n ребер в другом n-угольнике

Все вершины одного основания соединены ребрами с соответствующими вершинами другого основания.
Т.е n вершин соединены ребрами, значит боковых ребер тоже n штук.

Всего
n+n+n=3n.

3n кратно 3.
✎ к задаче 53332
H^2=13^2-5^2=169-25=144
H=12
✎ к задаче 53331