✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 1354 В постоянном магнитном поле заряженная

УСЛОВИЕ:

В постоянном магнитном поле заряженная частица движется по окружности. Когда индукцию магнитного поля стали медленно увеличивать, обнаружилось, что скорость частицы изменяется так, что кинетическая энергия частицы оказывается пропорциональной частоте её обращения. Найдите радиус орбиты частицы в поле с индукцией В, если в поле с индукцией В0 он равен R0.

РЕШЕНИЕ:

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 6877 ⌚ 30.05.2014. физика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ vk201218220

решение [youtube=https://youtu.be/1kQBTvdZWTk]

Физика и математика школьникам и студентам на канале
[link=https://www.youtube.com/ФизматКласс]

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 52846
(прикреплено изображение)
✎ к задаче 52845
По формулам приведения:
cos(3π/2+x)=-sinx

Уравнение принимает вид:

sin^2x-sqrt(3)*sinx=0

sinx*(sinx-sqrt(3))=0

Произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0:

sinx=0 или sinx-sqrt(3)=0

[b]x=πk, k ∈ Z[/b] или sinx=sqrt(3); sqrt(3) > 1; уравнение не имеет корней.

О т в е т.

a)[b]πk, k ∈ Z[/b]

б)х=4π ∈ [7π/2;4π]
✎ к задаче 52846
y`=(8+x)`*e^(x-8)+(8+x)*(e^(x-8))`=1*e^(x-8)+(8+x)*e^(x-8)*(x-8)`=

=e^(x-8)*(1+8+x)=e^(x-8)*(x+9)

y`=0 ⇒ e^(x-8)*(x+9)=0 ⇒ e^(x-8)> 0 [i]при любом х[/i] ⇒

x+9=0; [b] x=-9[/b]

x=-9 - точка минимума, так как при переходе через точку производная меняет знак с - на +:

f(-10)=e^(-10-8)*(-10+9)=-e^(-18) <0
f(-8)==e^(-8-8)*(-8+9)=e^(-16) >0

О т в е т. [b]х=-9[/b]
✎ к задаче 52848
По формулам приведения:
sin(π/2–x)=cosx

Уравнение принимает вид:

2cos^2x+sin2x=0

Так как sin2x=2sinx*cosx, то

2cos^2x+2sinx*cosx=0


2cosx*(cosx+sinx)=0

Произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0:

cosx=0 или cosx+sinx=0

[b]x=(π/2)+πn, n ∈ Z[/b] или sinx=-cosx; tgx=-1 ⇒[b] x=-(π/4)+πk, k ∈ Z[/b]

О т в е т.

a) [b](π/2)+πn, n ∈ Z[/b] ; [b] x=-(π/4)+πk, k ∈ Z[/b]

б) x=7π/2; x=9π/2; x=-(π/4)+4π=15π/4- корни,
принадлежащие отрезку [3π; 9π/2]
(прикреплено изображение)
✎ к задаче 52849