Найдите точку минимума функции y=x^2-14x+20lnx-6
ОДЗ:x > 0 y`=2x-14+(20/x) y`=(2x^2-14x+20)/х y`=0 2x^2-14x+20=0 x^2-7x+10=0 D=(-7)^2-40=9 x=(7-3)/2=2 или х=(7+3)/2=5 Знак производной (0) __+__ (2) __-__ (5) __+__ х=5 - точка минимума, производная меняет знак с - на +
От куда взялся квадрат в 3 строке?
Привели к общему знаменателю
Все домножили X, что бы избавиться от дроби