Условие
В сосуд, имеющий форму конуса, налили 50 мл жидкости до половины высоты сосуда (см. рис.). Сколько миллилитров нужно долить в сосуд, что заполнить его доверху?
математика 10-11 класс
51424
Решение
V1 = (1/3)πR2(h/2) = 50 мл – объем малого конуса
V2 = (1/3)π(2R)2h = 4·2·(1/3)πR2(h/2) = 8·V1 = 8·50 = 400 мл – объем большего конуса
V = V2–V1 = 400–50 = 350 мл
Ответ: 350
Обсуждения
Вопросы к решению (4)
Обратите внимание! Данный функционал устарел, для обсуждения решений используйте функционал, вызываемый кнопкой «Обсуждения»
Здесь всего одна формула. Формула объема конуса.
Откуда взялись числа 2 и 4?
Эти числа были вынесены чтобы привести часть формулу для V2 к виду V2 = nV1
Все решения
Часть конуса,заполненная жидкостью до половины высоты подобна полному конусу с коэффициентом подобия К=1/2
Мы знаем,что отношение объемов подобных, тел равно кубу коэффициента подобия, поэтому
составляем отношение Vч/V=(1/2)3. 50/V=1/8.Отсюда V=400 мл
Нужно долить 400–50=350(мл)
Ответ:350
Обсуждения
Написать комментарий