2x=t, t > 0
4x=t2
8x=t3
4x+1=4t2
2x+2=4t
Неравенство принимает вид:
(t–2)3/(4t–12) ≥ (t3–4t2+4t)/(9–t2);
((t–2)3/(4t–12))+ (t(t2–4t+4)/(t2–9)) ≥ 0;
(t–2)2·(t+3+4t)/4·(t–3)·(t+3)≥ 0;
(t–2)2·(5t+3)/4·(t–3)·(t+3)≥ 0;
_–___ (–3) ___+___ [–0,6]__–___[2]_–__ (3) __+__
–3 < t ≤ 0,6; t=2 ; t > 3
Так как t > 0, то 0 < t ≤ 0,6 ⇒ 2x ≤ 0,6
⇒ х ≤ log20,6
2x=2 ⇒ x=1
2x > 3
x > log23
О т в е т.(–∞; log20,6)U {1}U(log23; + ∞)