sin4(π/16)+sin4(3π/16)+sin4(5π/16)+sin4(7π/16)
sin4α=(1–cos2α)2/4
sin4(π/16)+sin4(3π/16)+sin4(5π/16)+sin4(7π/16)=
=((1–cos(π/8))2+(1–cos(3π/8))2+(1–cos(5π/8))2+(1–cos(7π/8))2)/4=
=(1+1+1+1–2cos(π/8)–2cos(3π/8)–2cos(5π/8)–2cos(7π/8)+cos2(π/8)+cos2(3π/8)+cos2(5π/8)+cos2(7π/8))/4=
=1–(cos(π/8)+cos(3π/8)+cos(5π/8)+cos(7π/8))/2 + (cos2(π/8)+cos2(3π/8)+cos2(5π/8)+cos2(7π/8))/4=
= так как cos2α=(1+cos2α)/2=
=1–(cos(π/8)+cos(3π/8)+cos(5π/8)+cos(7π/8))/2 + (1+cos(π/4)+1+cos(3π/4)+1+cos(5π/4)+1+cos(7π/4))/8=
= так как cos(7π/8)=–cos(π/8); cos(5π/8)=–cos(3π/8), то
(cos(π/8)+cos(3π/8)+cos(5π/8)+cos(7π/8))=0
cos(7π/4)=–cos(π/4); cos(5π/4)=–cos(3π/4), тоответ
=1+(4/8)=3/2
Ответ: 3/2