ЗАДАЧА 118 На дне сосуда, наполненного водой до

УСЛОВИЕ:

На дне сосуда, наполненного водой до высоты Н, находится точечный
источник света. На поверхности воды плавает круглый непрозрачный диск так, что центр диска находится над источником света. При каком минимальном радиусе R диска свет не будет выходить через поверхность воды? Показатель преломления воды п. 33. Столб вбит вертикально в дно реки глубиной Н = 2 м. Над поверхностью воды столб возвышается на h = 1 м. Какова длина тени столба на дне реки, если высота Солнца над горизонтом <р= 30° п=1,33.

РЕШЕНИЕ:

При определении ? свет ни будет выходить из воды ?=90 sin90=1
Sin?/sin?=1/n ; ?-пред-й угол отражения sin?-1/n В то же время
sin?=AO/AB ; AO=R
AB=R/sin?=Rn
Из теоремы Пифагора R*R=A*B*B-H*H=R*R*n*n-H*H
R=((Rn)*(Rn)-H*H)под корнем
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

R=((Rn)*(Rn)-H*H)под корнем

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 2728 ⌚ 01.01.2014. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ x^2-10x+25-x^2=3 -10x=-22 x=22/10 x=2,2 к задаче 26642

SOVA ✎ Одно х, второе 28-х Далее составляем функцию f(x)=x*(28-x) или еще какую-нибудь согласно условия и исследуем ее к задаче 26644

SOVA ✎ v км/ч - скорость первого (130/v) ч - время первого (v+1) км/ч - скорость второго (130/(v+1)) ч - время второго По условию первый был в пути на 12 мин=12/60 часа=1/5 часа больше. Уравнение (130/v)-(130/(v+1))=(1/5) 130*(v+1-v)=(1/5) 650=v*(v+1) v^2+v-650=0 D=1+4*650=2601=51^2 v=(-1+51)/2=25 км в час - скорость первого v+1=25+1=26 км в час - скорость второго О т в е т. 26 км в час к задаче 26639

SOVA ✎ (x-5-x)*(x-5+x)=3 -5*(2x-5)=3 2x-5=-3/5 2x=5-(3/5) 2x=22/5 x=22/10 x=2,2 О т в е т. 2,2 к задаче 26641

SOVA ✎ Если прямая у=k_(1)x+b_(1) перпендикулярна прямой у=k_(2)x+b_(2), то k_(1)*k_(2)= - 1 Перепишем уравнение прямой x–20y+5=0 в виде y=(1/20)x+(5/20) k_(1)=1/20 k_(2)=-20 Угловой коэффициент касательной k( касательной) = - 20 Геометрический смысл производной в точке: f`(x_(o)=k(касательной) f`(x)=(-3x^2+4x+7)`=-6x+4 f`(x_(o))=-6x_(o)+4 -6x_(o)+4=-20 -6x_(o)=-24 x_(o)=4 y_(o)=-3*4^2+4*4+7=-48+16+7=-25 О т в е т. (4;-25) к задаче 26643