✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 1149 Стороны основания прямого

УСЛОВИЕ:

Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60°. Меньшая из площадей диагональных сечений равна 130 см^2. Найдите площадь поверхности параллелепипеда.

РЕШЕНИЕ:

Пусть AB1=8 см, A1D1=15 см, угол B1A1D1=60 градусов
S1 = H*BD - площадь первого сечения
S2 = Н*АС - второго
BD2=sqrt(64+225-2*8*15*cos60)=13 по т. косинусов
AC2=sqrt(64+225-2*8*15*cos120)=sqrt(409)
Наименьшее сечение BB1D1D
Sбок=460 см^2
2Sосн=120sqrt(3) см^2
Sполн=Sбок+2Sосн=20(23+6sqrt(3)) см^2

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

20(23+6sqrt(3))

Добавил slava191, просмотры: ☺ 11116 ⌚ 13.05.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
y'= ∫ dx/sqrt(1-x^(2))=arcsinx+C_(1)
y'(0)=3
3=arcsin0+C_(1) ⇒ C_(1)=3
y= ∫ (arcsin0+3)dx=x*arcsinx+sqrt(1-x^(2))+3x+C_(2)
y(0)=2
2=0*0+1+3*0+C_(2) ⇒ C_(2)=1
y(x)=x*arcsin x+sqrt(1-x^(2))+3x+1
y(1)=1*arcsin 1+sqrt(1-1^(2))+3+1=5,571 ≈ 5,57

✎ к задаче 51990
Условие:
xy''=y'
Решение:
Положим dy/dx=z, тогда данное уравнение запишется в виде
xdz/dx=z; или xdz=zdx; отсюда dz/z=dx/x , интегрируя ∫ dz/z= ∫ dx/x получаем
lnz=lnx+lnC1 или lnz=lnxC1, отсюда z=e^ln(xC1)=xC1 т,к z=y', то
Получаем общее решение исходного уравнения
dy/dx=xC1, отсюда dy=xC1dx или y= ∫ xC1dx=x^2/2*C1+C2
✎ к задаче 51991
Из прямоугольного треугольника SAO:
AO=4 ( катет против угла в 30 градусов равен половине гипотенузы)

Наклонные SA=SB=SC равны, значит равны и проекции AO=BO=CO

O- центр окружности, описанной около равнобедренного треугольника
АВС ( АВ=BC=6)

R=abc/4S_( Δ ABC);

АС=2х
BD=sqrt(6-x^2)

S_(Δ ABC)=(1/2)AC*BD=(1/2)*2x*sqrt(36-x^2)

4=6*6*(2x)/(4x*sqrt(36-x^2)) ⇒ 2*sqrt(36-x^2)=9;

Возводим в квадрат:


4*(36-x^2)=81

(2x)^2=63

2x=sqrt(63)

AC=2x=[b]sqrt(63)[/b]



✎ к задаче 51987
На (- ∞ ;-1) функция непрерывна, так как y=-x^2+2 непрерывна на (- ∞ ;+ ∞ )

На (-1;0) функция непрерывна, так как y=3x+2 непрерывна на (- ∞ ;+ ∞ )

На (0;+ ∞ ) функция непрерывна, так как y=2 непрерывна на (- ∞ ;+ ∞ )

Значит, надо исследовать непрерывность функции в точках х=-1 и х=0

х=0

Находим [green]предел слева:[/green]
lim_(x →-1 -0)f(x)=lim_(x →-1 -0)(-x^2+2)=-1+2=1

Находим [red]предел справа:[/red]
lim_(x → -1+0)f(x)=lim_(x → -1+0)(3x+2)=-1
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется

х=-1 - [i]точка разрыва первого рода [/i]

В точке существует [i]конечный[/i] скачок



х=0
Находим [green]предел слева:[/green]
lim_(x → -0)f(x)=lim_(x → -0)(3x+2)=2

Находим [red]предел справа[/red]:
lim_(x → +0)f(x)=lim_(x → +0)(2)=2

предел слева = пределу справа
Предел в точке x=1 существует и равен значению функции в этой точке


х=1 - [i]точка непрерывности[/i]



2.
|x+6|=-x-6, при x <-6

|x+6|=x+6, при x >-6


y=\left\{\begin{matrix} -1, x<-6\\1,x>-6 \end{matrix}\right.

Функция непрерывна на (- ∞ ;-6) и на (-6;+ ∞ )

В точке х=-6 функция имеет[b] разрыв первого рода
[/b]
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется


В точке существует [i]конечный[/i] скачок
(прикреплено изображение)
✎ к задаче 51988
(прикреплено изображение)
✎ к задаче 51982