170, 171, 172, 174, ... и далее отмечены.
логарифм степени
54log_(19)19^(1/3)=1/3)*54log_(19)19=54/3=18;
171.
Переходим к основанию 14
log_(14)14/log_(14)(14)^(1/8)=1/(1/8)=8;
172
Представим 2=log_(5)25
Сумму логарифмов заменяем логарифмом произведения
log_(5)150/(log_(5)25+log_(5)6)=log_(5)150/log_(5)150=1
174
Переходим к основанию 7 в первом логарифме:
(1/log_(7)1,25)*log_(7)(4/5)=(формула перехода наоборот справа налево)=log(1,25)4/5=-1
175
Основное логарифмическое тождество
(7^2)^((1/2)*log_(49)36)=49^(log_(49)6)=6
176
Переходим к основанию 5
(log_(5)5^3/log_(5)5^(1/2))^3=(3/(1/2))^3=6^3=216
177
3^2*3^(log_(3)11)=9*11=99
178
16^(log_(16)5^3=125
179
(7^2)^log_(7)sqrt(11)=7^(log_(7)(sqrt(11))^2=11
180
log_(9)(log_(4)4^3)=log_(9)3=1/2
181
96/12=8
182
log_(22)sqrt(22)/log_(22)(1/22)=1/2:(-1)=-1/2