✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 1074 Стартуя из точки А (см. рисунок),

УСЛОВИЕ:

Стартуя из точки А (см. рисунок), спортсмен движется равноускоренно до точки В, после которой модуль скорости спортсмена остаётся постоянным вплоть до точки С. Во сколько раз время, затраченное спортсменом на участок ВС, больше, чем на участок АВ, если модуль ускорения на обоих участках одинаков? Траектория ВС - полуокружность.

РЕШЕНИЕ:

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (3)

ОТВЕТ:

Pi

Добавил slava191, просмотры: ☺ 36185 ⌚ 03.05.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Обозначим объем производства
V(t)=12 000 - 2t
Тогда
Q(t)=V(t)*t - налоговый сбор

Q(t)=(12 000 -2t)*t

Q(t)=12 000 t - 2t^2

Q`(t)=12 000 -4t

Q`(t)=0

12 000 - 4t=0

t= 3 000 - точка максимума функции Q(t)

Т. е налоговый сбор достигает максимума при t= 3 000 руб за единицу продукции.

При t=t_(o) налоговые собры составили:

Q(t_(o))=12 000 t_(o) - 2t^2_(o)

При t_(1)=4t_(o) налоговые собры составили:

Q(t_(1))=12 000*4*t_(o) - 2(4t_(o))^2=48 000*t_(o) - 32 t^2_(o)

По условию [i]сумма налоговых поступлений не изменилась[/i]

Q(t_(o))=Q(t_(1))

12 000 t_(o) - 2t^2_(o)=48 000*t_(o) - 32 t^2_(o)

30t^2_(o)-36 000 t_(o)=0

6t_(o)*(5t_(o)-600)=0
✎ к задаче 45616
О т в е т. 4 и 8
Решение.

Пусть АВ=[b]х[/b]; тогда BC=[b]2x[/b]

Δ АBF - равнобедренный
∠ BAK= ∠ KAD - так как АК - биссектриса
∠BKP= ∠ KAD - [i]внутренние накрест лежащие[/i] при параллельных ВС и AD и секущей AK

По свойству транзитивности:
[b]∠BKP= ∠ BAK[/b]

Тогда ВК=х; KC=x

∠ АВС= ∠ КСN -[i] внутренние накрест лежащие[/i] при параллельных AB и CD и секущей BC
∠ ВКA= ∠ NKC как [i]вертикальные[/i]
Δ АВK= Δ KCN по стороне и двум прилежащим к ней углам.

⇒ AB=BC=KC=CN=x

∠ ВAF= ∠ FDM -[i] внутренние накрест лежащие[/i] при параллельных AB и CD и секущей AD
∠ ВFA= ∠ DFM как [i]вертикальные[/i]
Δ AВF= Δ FDM по стороне (AF=FD=x) и двум прилежащим к ней углам.

⇒ AB=AF=FD=DM=x

MN=MD+DC+CN=x+x+x

По условию MN = 12

x+x+x=12

3x=12

[b]x=4
[/b]

2х=2*4=8

О т в е т. 4 и 8


(прикреплено изображение)
✎ к задаче 45627
(прикреплено изображение)
✎ к задаче 45589
а)
АВСD – трапеция, вписанная в окружность.

Если четырехугольник вписан в олружность, то суммы противолежащих углов четырехугольника равна 180

∠ А+ ∠ С=180 °
и

∠ В+ ∠ D=180 °


Сумма углов, прилежащих к боковой стороне трапеции равна 180 ° .

∠ А+ ∠ В=180 °

и ∠ С+ ∠ D=180 ° .


Вычитаем из первого равенства третье: ∠ С- ∠ B=0 ° ⇒

∠ B= ∠ C;

Тогда
∠ А+ ∠ В= ∠ A+ ∠ C

∠ A+ ∠ C=180 °
∠ С+ ∠ D=180 ° .

∠ A- ∠ D=0 ° ⇒

∠ A= ∠ D;

Углы при основаниях равны, трапеция [i]равнобедренная.[/i]

б)
Из треугольника МОС:
MO^2=25^2-7^2=(25-7)*(25+7)=18*32=36*16=6^2*4^2=(24)^2
MO=24
Из треугольника KОD:
DO^2=25^2-20^2=(25-20)*(25+20)=5*45=(15)^2
MO=15

MK=MO+OD=24+15=[b]39[/b]
(прикреплено изображение)
✎ к задаче 45628
a) Δ АВС - прямоугольный ( ∠ С=90 ° )

Сумма острых углов прямоугольного треугольника равна 90 °

Тогда
∠ ВСК= ∠ВАС ( выделены зелёным цветом на рис. 2)
∠ АВС= ∠ АСК ( выделены синим цветом на рис.2)

Δ ВСК ~ Δ АСК по двум углам

Из подобия:

\frac{BK}{CK}=\frac{CK}{AK}

CK^2=BK\cdot AK

СK=\sqrt{BK\cdot AK} - высота прямоугольного треугольника проведенная из вершины прямого угла на гипотенузу есть [i]среднее геометрическое [/i]между отрезками гипотенузы, на которые основание высоты делит гипотенузу

б)
BK=1; AK=4

СК=\sqrt{1\cdot 4}=2

О т в е т. б) 2
(прикреплено изображение)
✎ к задаче 45629