Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 10702 Найти все значения параметра а, при...

Условие

Найти все значения параметра а, при каждом из которых уравнение
|5x+1–a|–|5x+2a|=25x имеет ровно два неотрицательных решения.

математика 10-11 класс 3772

Решение

Сделаем замену переменной.
5x=t > 0; 25x=(52)x=(5x)2=t2


Если 5x=t1 или 5x=t2
t1 ≥ 1 и t2 ≥ 1, то данное уравнение будет иметь два неотрицательных корня.

После введённой замены
уравнение примет вид
|5t–a|–|t+2a|=t2.

Применяем координатно–параметрический метод.
Рассматриваем плоскость аОt
Раскрываем знак модуля в каждой из четырех областей.

1) Подмодульные выражения обращаются в 0
при 5t–a=0 ⇒ t=a/5
при t+2a=0 ⇒ t=–2a

Прямые t=a/5 и t=–2a разбивают координатную плоскость аОt на 4 области.

Раскрываем знаки модуля в каждой области
1 область
{5t–a ≥ 0
{t+2a ≥ 0

5t–a–t+2a=t2 ⇒ a=(–1/3)(t2–t) – зеленая парабола

Вершина параболы в точке t=1/2 a=1/8.
О т в е т. два неотрицательных решения 0 < t ≤ 1 при 0 < a ≤ 1/8
Обратная замена приводит к уравнениям
5x=t1 или 5x=t2,
не имееющим неотрицательных решений.
В первой области нет решений.

2 область
{2t–a ≥ 0
{t+2a < 0
2t–a+t+2a=t2 ⇒ a=t2–3t
парабола оранжевого цвета, оставлена только та её часть, которая принадлежит области 2.
Вершина в точке t=1,5; a=–2,25.
На (–2,25;–2]
Уравнение имеет два решения
t от 1 до 2
Обратная замена
приводит к двум уравнениям
5x=t1 или 5x=t2
Решение которых и дает неотрицательных решения х

3 область
и
4 область
расположены ниже оси Оа
положительных значений t нет, а значит и уравнение
5x=t не будет иметь решений

Поскольку показательное уравнение
5x=t имеет положительный корень, если t > 1, то
при a∈(–2,25;–2] данное уравнение будет иметь ровно два неотрицательных корня.

О т в е т. a∈(–2,25;–2]

Уравнение примет вид
|5t–a|–|t+2a|=t2.
Применяем координатно–параметрический метод.
Раскрываем модули.
1) Подмодульные выражения обращаются в 0
при 5t–a=0 ⇒ t=a/5
при t+2a=0 ⇒ t=–2a
Прямые t=a/5 и t=–2a разбивают координатную плоскость аОt на 4 области.

Раскрываем знаки модуля в каждой области
1 область
5t–a–t–2a=t2 ⇒ a=(4t–t2)/3
парабола сиреневого цвета, оставлена только та ее часть, которая расположена в области 1.
Вершина параболы в точке t=2 a=4/3.
Поскольку показательное уравнение
5x=t имеет положительный корень, если t > 1, то
при a∈U[1;4/3) данное уравнение будет иметь ровно два неотрицательных корня.
2 область
5t–a+t+2a=t2 ⇒ a=t2–6t
парабола оранжевого цвета, оставлена только та её часть, которая принадлежит области 2.
Вершина в точке t=3; a=–9.
3 область
и
4 область
расположены ниже оси Оа и дают отрицательные значения t
Поскольку показательное уравнение
5x=t
при t ≤ 0 не имеет решений вообще.
при a∈(–9;–5] уравнение будет иметь ровно два неотрицательных корня.

О т в е т. a∈(–9;–5]U[1;4/3)


Ответ: a∈(–9;–5]U[1;4/3)

Обсуждения
Вопросы к решению (2)

Все решения

Возможно, в условии задачи допущена ошибка, и условие должно выглядеть так, как представлено выше в решении |5x+1–a|–|5x+2a|=25x . Если уравнение действительно записано верно, то задача решений не имеет.

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК