✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 1034 Высота SO правильной треугольной

УСЛОВИЕ:

Высота SO правильной треугольной пирамиды SABC составляет 5/7 от высоты SM боковой грани SAB. Найдите угол между плоскостью основания пирамиды и её боковым ребром

РЕШЕНИЕ:

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

В решение

Добавил slava191, просмотры: ☺ 6968 ⌚ 26.04.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
sgrt(8-7x)=-x
Решение:
ОДЗ: -x ≥ 0, x ∈ (- ∞ ;0 )
sgrt(8-7x)+ x=0. Воспользуемся тем , что сумма двух убывающих
функций есть функция убывающая на их общей области определения. поэтому данное уравнение не может иметь более одного корня.
Поэтому подбором находим корень уравнения x=-8
Проверка : sgrt(8+ 56)=8-верно.
Ответ:-8.
✎ к задаче 37959
x²–4xy+4y²–4x+8y+7=(x²–4xy+4y²)-(4х-8у)+7=
=(x-2y)²-4(x-2y)+7=4²-4*4+7=16-16+7=7
✎ к задаче 44413
AP ⊥ пл β
ВТ ⊥ пл β

AP||BT

AK ⊥ [i]l[/i]
BM ⊥ [i]l[/i]

Δ АРК ∼ ΔВТМ ( по двум углам)
∠ АКР= ∠ВМТ
∠ АРК= ∠ ВТМ=90 °

Из подобия треугольников

8:14=x:42

x=24
(прикреплено изображение)
✎ к задаче 44411
BC ⊥ AC ⇒ DC ⊥ AC по теореме о 3-х перпендикулярах

∠ BCD - линейный угол двугранного угла

cos ∠ BCD=BC/DC=6/12=1/2

∠ BCD=60 °
✎ к задаче 44410
Пусть было х

Первый взял (1/13)*x осталось (12/13)*x

Второй взял (1/17) от (12/13)*x

(1/17) *(12/13)*x

Осталось:

(12/13)*x - (1/17) *(12/13)*x= (12/13)*(1-(1/17))*x=(12/13)*(16/17)*x

Это равно 150

(12/13)*(16/17)*x=150

(192/221)x=150

x=150:(192/221)

x=150*(221/192)

x=5525/32
✎ к задаче 44409