✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 103 Железную проволоку длиной 10м подключили

УСЛОВИЕ:

Железную проволоку длиной 10м подключили к источнику напряжения 10V. На сколько повысится температура в проволоки через 10 секунд. Зависимостью сопротивления проводника от температуры пренебречь. Плотность железа 7800кг куб. м. Уд. Теплоёмкость 460 Джкг*Н

РЕШЕНИЕ:

Q1=cmT=?cSLT Q2=U*UT/R=U*UST/?L
Из закона сох-я эн-ии Q1=Q2 след-тcLTS?’U*U*T*S/?L
T=U*U*T/L*L*C*P*?=23K

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

23К

Добавил slava191, просмотры: ☺ 761 ⌚ 01.01.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
1.
x=8^(-1)
[b]x=1/8[/b]

2.

sin3 a cos a + sin a cos 3 a =синус суммы=sin(3a+a)=sin4a

3.

Высота конуса перпендикулярна плоскости основания.
h=L/2
L=2h
По теореме Пифагора
L^2-h^2=r^2

(2h)^2-h^2=r^2
3h^2=(6sqrt(3))^2
3h^2=108
h^2=36
[b]h=6 cм[/b]
(прикреплено изображение) [удалить]
✎ к задаче 34919
D=2R
d=2r
d:D=a:b

(2r):(2R)=r:R

r:R=a:b
Касательная перпендикулярна радиусу, проведенному
в точку касания.
Прямоугольные треугольники:
IAO и JBO подобны по двум углам.
∠ IOА = ∠ JОB как вертикальные

Из подобия треугольников
JO:OI=r:R=a:b
(прикреплено изображение) [удалить]
✎ к задаче 34915
a) Табличный интеграл
∫ sin [b]u[/b]d [b]u[/b]=-cosu+C
u=x^3
du=3x^2dx
x^2dx=(1/3)du

∫ x^2*sin^3xdx=(1/3) ∫ sinudu=(1/3)*(-cosu)+C= [b]-(1/3)cosx^3+C[/b]

б)
2^(x+1)=2^(x)*2^(1)=2*2^(x)
интегрируем по частям:
u=x ⇒ du=dx
dv=2^(x)dx ⇒ v= ∫ 2^(x)dx=2^(x)/ln2 + C

∫ udv=u*v- ∫ v*du

получаем

∫ x*2^(x+1)dx=2* ∫ x* [b]2^(x)dx[/b]= 2*(x*2^(x)/ln2)-2* ∫ 2^(x)dx/ln2=

= 2*(x*2^(x)/ln2)- (2/ln2) *(2^(x)/ln2) + C=

= [b](x*2^(x+1)/ln2) - (2^(x+1)/(ln^22) + C[/b]

в) см. интегрирование рациональных дробей.

раскладываем знаменатель на множители, а дробь на простейшие:

(x+2)/(x*(x-1)(x+1)) = (A/x)+(B/(x-1))+ (D/(x+1))

[b]x+2= A*(x-1)*(x+1) + B*x*(x+1) + D*x*(x-1)[/b]

Применяем метод частных значений.

Если левая и правая части выражения с переменной равны, то они равны и при одном и том же значении переменной:

при х=0
2=-А ⇒ [b]A= - 2[/b]
при х=1
3=2B ⇒ [b] B=3/2[/b]
при х=-1
1=2D ⇒ [b]D=1/2[/b]

О т в е т. -2 ∫ dx/x +(3/2) ∫ dx/(x-1)+(1/2) ∫ dx/(x+1)=

= [b]-2ln|x|+(3/2)ln|x-1|+(1/2)ln|x+1| + C[/b]
[удалить]
✎ к задаче 34911
1a)
[b]табличный интеграл:
∫ sin [b]u[/b]d [b]u[/b]= - cosu+C[/b]

∫ sin4xdx=[замена 4х=t ⇒ d(4x)=dt ⇒ 4dx=dt ⇒ dx=dt/4]=
∫ sint*(dt/4)=(1/4) ∫ sin [b] t[/b]d [b]t[/b]=(1/4)8(-cost)+C=(- 1/4)cos4x+c

Решение можно записать короче, если применить действие, называемое "подведением под дифференциал"
Все вычисления в квадратных скобках можно сделать устно
и
∫ sin4xdx=(1/4) ∫ sin4x*(4dx)=(1/4) ∫ sin [b]4x[/b] d( [b]4x[/b])=(-1/4)cos4x+C

1б)
[b]табличный интеграл:
∫ d [b]u[/b]/sqrt( [b]u[/b])=2sqrt(u) + C[/b]

∫ dx/sqrt(4x-8)=(1/4) ∫ d( [b]4x-8[/b])/sqrt( [b]4x-8[/b])=(1/4)*2sqrt(4x-8)
устно вычислила, что d(4x-8)=4dx
Разделила на 4 ( вынесла за знак интеграла) и умножила на 4
4dx заменила на d(4x-8)

1в)

[b]Табличный интеграл
∫ x^( α )dx=x^( α +1)/( α +1) + C[/b]

Cвойства степени: при умножении степеней с одинаковыми основаниями показатели складываем, при делении - вычитаем.
a^(n)=1/a^(-n)

Интеграл от суммы равен сумме интегралов. Постоянный множитель можно вносить за знак интеграла

=3 ∫ x^(4/3)dx - 4 ∫ x^((1/6)-1)dx+7 ∫ x^(-7)dx=

=3*x^((4/3)+1)/((4/3)+1) - 4* x^(1/6)-1+1)/(1/6) +7x^(-7+1)/(-7+1)+C=

= [b](9/7)*x^(7/3) -24x^(1/6)-(7/(6x^6)) + C[/b]


2a)
[b]табличный интеграл:
∫ d [b]u[/b]/sqrt( [b]u[/b])=2sqrt(u) + C[/b]
устно вычислила, что d(9x^2-15)=18x*dx
Разделила на 18 ( вынесла за знак интеграла) и умножила на 18
18xdx заменила на d(9x^2-15)

=(1/18) ∫ d(9x^2-15)/sqrt(9x^2-15)= [b](1/18)*2sqrt(9x^2-15)+С[/b]

2б)
[b]табличный интеграл:
∫ d [b]u[/b]/( [b]u[/b]^2-a^2)=(1/2a)*ln |(u-a)/(u+a)|+C[/b]

∫ dx/(2x^2-15)= ∫ dx/2*(x^2-(15/2))=(1/2) ∫ dx/(x^2-(15/2))=

=(1/2)* (1/2*sqrt(15/2))*ln |(x-sqrt(15/2))/(x+sqrt(15/2))| + C

= [b]1/(2*sqrt(30))ln |(sqrt(2)*x-sqrt(15))/(sqrt(2)*x+sqrt(15))| + C[/b]

2в)
[b]табличный интеграл:
∫ d [b]u[/b]/sqrt( [b]u[/b]^2± k)=ln |u+sqrt(u^2± k)|+C[/b]

u=5x
du=5dx
dx=du/5

∫ dx/sqrt(25x^2-7)= ∫ (du/5)/sqrt(u^2-7)=

=(1/5)ln|u+sqrt(u^2-7)|+C=

=(1/5)ln|5x+sqrt(25x^2-7)|+C

Ответ.(1/5)ln|5x+sqrt(25x^2-7)|+C или (1/5)ln|x+sqrt(x^2-(7/25))|+C

за счет свойств логарифма ( логарифм произведения равен сумме логарифмов) ответы равны с точностью до константы.

Остальные задания выставляйте
отдельно
4. Это громоздкое задание на метод интегрирования по частям
и отдельно
5. Интегрирование квадратного трехчлена: выделение полного квадрата и замена переменной
[удалить]
✎ к задаче 34901
Линейное неоднородное уравнение второго порядка с постоянными коэффициентами.
Составляем характеристическое уравнение:
k^2-2k=0
k_(1)=0; k_(2)=2- корни действительные различные

Общее решение однородного имеет вид:
y_(одн.)=С_(1)e^(0)+C_(2)e^(2x)

частное решение неоднородного
x=0 - корень характеристического уравнения кратности x
y_(част)=(Ax+B)*x - линейная функция умножается на х в первой степени.
(кратность корня 1)

Находим производную первого, второго порядка
y_(част)=Ax^2+Bx
y`_(част)=2Ax+B
y``_(част)=2А

и подставляем в данное уравнение:

2A-2*(2Ax+B)=5x+3
-4Ах+(2А-2В)=5х+3

-4А=5

2А-2В=3

А=-5/4

B= - 11/4

y_(част)=(-5/4)x^2-(11/4)x

О т в е т. y=y_(одн.)+y_(част)=

= [b]С_(1)e^(0)+C_(2)e^(2x)+(-5/4)x^2-(11/4)x[/b]
[удалить]
✎ к задаче 34893