б) Отберите корни на промежутке [π; 3π/2]
4sin^42x + 3cos4x – 1 =0;
4•((1 – cos4x)/2)^2 + 3cos4x – 1 = 0;
cos^24x + cos4x =0;
cos4x(cos4x + 1) = 0
cos4x = 0 или сos4x+1=0
4x= (π/2)+ πk, k∈Z или сos4x=-1
4x= π + 2πn, n∈Z
x= (π/8)+ (π/4)k, k∈Z или х=(π/4)+ (π/2)n, n∈Z
б)
Отбор корней см на рисунке.
О т в е т. 9π/8; 5π/4; 11π/8
cos(4x) = 0
4x = +-pi/2 + pik
x1 = +-pi/8 + pik/4
cos(4x) + 1 = 0
cos(4x) = -1
4x = +-pi + pik
x2 = +-pi/4 + pik/4, k E Z