✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 10 Решите уравнение cos4x-cos2x=0
Укажите

УСЛОВИЕ:

Решите уравнение cos4x-cos2x=0
Укажите корни, принадлежащие отрезку [Pi/2;2Pi]

РЕШЕНИЕ:

Преобразуем выражение в 2cos^2x - cos2x - 1=0
Сделаем замену t=cos2x и решим как квадратное уравнение.

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (4)

ОТВЕТ:

a) Pi*k/3 б) 2Pi/3, Pi, 4Pi/3, 5Pi/3, 2Pi

Добавил slava191, просмотры: ☺ 46794 ⌚ 17.11.2013. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 53335
(прикреплено изображение)
✎ к задаче 53334
(прикреплено изображение)
✎ к задаче 53333
У призмы два основания, в основаниях призмы лежат n-угольники. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.

Количество вершин одного основания равно n. Количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.

2n - четное, т.к. кратно 2.


У призмы два основания, в основаниях призмы лежат n-угольники.
n-угольник имеет n сторон, они являются ребрами призмы.

n ребер в одном n-угольнике и n ребер в другом n-угольнике

Все вершины одного основания соединены ребрами с соответствующими вершинами другого основания.
Т.е n вершин соединены ребрами, значит боковых ребер тоже n штук.

Всего
n+n+n=3n.

3n кратно 3.
✎ к задаче 53332
H^2=13^2-5^2=169-25=144
H=12
✎ к задаче 53331