✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Формулы сложения cos(α±β) и sin(α±β)

Теорема: Для любых α и β справедливо равенство cos(α+β) = cosαcosβ – sinαsinβ.

Доказательство:

Чтобы получить эту формулу рассмотрим единичный тригонометрическую окружность с двумя радиус векторами OA и OB, соответствующими углам α и β.

По определению тригонометрических функций координаты векторов: ОА (cos α, sin α) и ОВ (cos β, sin β). Вычислим скалярное произведение этих векторов: ОА × ОВ = |ОА| × |ОВ| × cos (α+β) = cos (α+β)

Вычислим скалярное произведение векторов через координаты: ОА × ОВ = cos α cos β – sin α sin β. Так получается искомая формула: cos(α + β) = cos α cos β – sin α sin β.

Просмотры: 1029 | Статью добавил: SashaShevcova | Категория: математика