Непрерывность функций


Непрерывность функции в точке



Определение. Пусть функция у = f(x) определена в точке x0 и некоторой её окрестности. Функция у = f(x) называется непрерывной в точке x0, если:

1. существует
2. этот предел равен значению функции в точке x0:

При определении предела подчёркивалось, что f(x) может быть не определена в точке x0, а если она определена в этой точке, то значение f(x0) никак не участвует в определении предела. При определении непрерывности принципиально, что f(x0) существует, и это значение должно быть равно lim f(x).

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x0, если для всех ε>0 существует положительное число δ, такое что для всех x из δ-окрестности точки x0 (т.е. |х-x0|<δ) выполняется неравенство |f(x) - f(x0) < ε|

Здесь учитывается, что значение предела должно быть равно f(x0), поэтому, по сравнению с определением предела, снято условие проколотости δ-окрестности 0<|x-x0|

Дадим ещё одно (равносильное предыдущим) определение в терминах приращений. Обозначим Δх = x - x0, эту величину будем называть приращением аргумента. Так как х—>x0, то Δх—>0, т е. Δх - б.м. (бесконечно малая) величина. Обозначим Δу = f(х)-f(x0), эту величину будем называть приращением функции, так как |Δу| должно быть (при достаточно малых |Δх|) меньше произвольного числа ε>0, то Δу- тоже б.м. величина, поэтому

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(х) называется непрерывной в точке x0, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение. Функция f(х), не являющаяся непрерывной в точке x0, называется разрывной в этой точке.

Определение. Функция f(х) называется непрерывной на множестве X, если она непрерывна в каждой точке этого множества.

Основные теоремы о непрерывных функциях



Теорема о непрерывности суммы, произведения, частного


Теорема о переходе к пределу под знаком непрерывной функции


Теорема о непрерывности суперпозиции непрерывных функций


Односторонняя непрерывность





Непрерывность и разрывы монотонной функции



Пусть функция f(x) определена на отрезке [a,b] и монотонна на этом отрезке. Тогда f(x) может иметь на этом отрезке только точки разрыва первого рода.

Теорема о промежуточном значении. Если функция f(x) непрерывна на отрезке и в двух точках а и b (a меньше b) принимает неравные значения A = f(a) ≠ В = f(b), то для любого числа С, лежащего между А и В, найдётся точка c ∈ [a,b], в которой значение функции равно С: f(c) = C.

Теорема об ограниченности непрерывной функции на отрезке. Если функция f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема о достижении минимального и максимального значений. Если функция f(x) непрерывна на отрезке, то она достигает на этом отрезке свои нижнюю и верхнюю грани.

Теорема о непрерывности обратной функции. Пусть функция y=f(x) непрерывна и строго возрастает (убывает) на отрезке [а,b]. Тогда на отрезке [m, M] существует обратная функция х = g(y), также монотонно возрастающая (убывающая) на [m, M] и непрерывная.

slava191
1936

Написать комментарий

Читайте также:

Производные первого порядка

Дифференцирование неявных функций. Дифференцирование функций заданных параметрически. Логарифмическое дифференцирование. Приложения производной

Дифференцирование функций

Производная. Геометрический смысл производной. Механический смысл производной. Необходимое условие существования производной. Основные правила дифференцирования. Таблица производных
Не можешь решить?
ПОМОГИТЕ РЕШИТЬ
Мы ВКонтакте

б (+ б)
добавлено решений
лучших решений
добавлено задач