ЗАДАЧА 8007 Укажите номера верных утверждений. 1)Во

УСЛОВИЕ:

Укажите номера верных утверждений.

1)Во всяком треугольнике против меньшей стороны лежит больший угол.
2)Периметр треугольника равен сумме длин сторон треугольника.
3)Стороны треугольника обратно пропорциональны синусам противолежащих углов.

Показать решение

РЕШЕНИЕ:

1)Во всяком треугольнике против меньшей стороны лежит больший угол.
Утверждение неверное, против меньшей стороны лежит меньший угол, против большей стороны лежит больший угол(из соотношения между сторонами и углами треугольника).
2)Периметр треугольника равен сумме длин сторон треугольника.
Утверждение верно, периметр любого многоугольника равен сумме длин всех сторон.
3)Стороны треугольника обратно пропорциональны синусам противолежащих углов.
Утверждение неверное, по теореме синусов: стороны треугольника пропорциональны синусам противолежащих углов.

ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

2

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ОГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил Julia_Trusova , просмотры: ☺ 1894 ⌚ 23.03.2016. математика 8-9 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ x^2+10x+24=0 D=10^2-4*24=100-96=4 x1=(-10-2)/2 или x2=(-10+2)/2 x1=-6 или х2=-4 О т в е т. -6; -4. к задаче 16082

SOVA ✎ ОДЗ: {(3/x) > 0 ⇒ x > 0 {(3/x)≠1 ⇒ x≠3 {9/(24-2x) > 0 ⇒ 24-2x > 0 ⇒ x < 12 ОДЗ: х∈(0;3)U(3;12) log_(3/x)(9/(24-2x)) ≤ 2*log_(3/x)(3/х); log_(3/x)(9/(24-2x)) ≤ log_(3/x)(3/х)^2. Применяем метод рационализации логарифмических неравенств: ((3/х)-1)*((9/(24-2х)) - (9/x^2)) ≤0 (3-x)*9*(x^2+2x-24)/(x^3*(24-2x))≤0 9*(x-3)*(x+6)*(x-4)/(2x^3*(x-12))≤0 Применяем метод интервалов с учетом ОДЗ: (0) _-___ (3) _+__[4] ___-____ (12) О т в е т. (0;3)U[4;12) к задаче 16090

u17864292 ✎ Покрыты кутикулой к задаче 16080

SOVA ✎ см. рисунок, точки возможного максимума отмечены на рисунке. к задаче 16072

SOVA ✎ Cкладываем оба уравнения: (2+а)у=2-2a^2; При а≠-2 у=(2-2a^2)/(2+a); x=2-a-2y=(4-a^2-4+4a^2)/(2+a)=3a^2/(2+a)- единственное решение. О т в е т. (-бесконечность;-2)U(-2; +бесконечность) к задаче 15974