ЗАДАЧА 4584 В клубе собрались 13 путешественников.

УСЛОВИЕ:

В клубе собрались 13 путешественников. Когда зашел разговор о стране N, оказалось, что вместе любые 6 путешественников побывали во всех городах страны N (то есть каждй город посетил хоть один из этих 6 путешественников), а любые 5 - нет (то есть найдется город, в котором не был ни один из этих 5 путешественников). При каком минимальном количестве городов в стране N это могло быть?

Добавил slava191 , просмотры: ☺ 4555 ⌚ 22.10.2015. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ VyacheslavChekmenev ПОКАЗАТЬ РЕШЕНИЕ ЛУЧШЕЕ РЕШЕНИЕ!

В клубе собрались 11 путешественников. Когда зашел разговор о стране N, оказалось, что вместе любые 6 путешественников побывали во всех городах страны N (то есть каждый город посетил хоть один из этих 6 путешественников), а любые 5 - нет (то есть найдется город, в котором не был ни один из этих 5 путешественников). При каком минимальном количестве городов в стране N это могло быть?
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
На мой взгляд, условие задачи не соответствует приведенному решению, поэтому понять логику мышления очень тяжело (или даже невозможно). Прошу к данному решению вначале приложить соответствующее задание. ответить
Сначала регистрация
собственно оно и приложено

РЕШЕНИЕ ОТ TatyanaBoronina ПОКАЗАТЬ РЕШЕНИЕ

Для любой пятерки существует город,где не был ни один из них.Для 2х различных пятерок такой город не может быть общим,т.к. в этом случае есть 6 путешественников,которые в нем не были.Значит городов не меньше чем количество различных пятерок.т.е.числа сочетаний из13 по 5.Если городов ровно столько,то для любой шестерки путешественников условие выполнено.
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ Cм. рисунок. Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х–0,5. Противоположные стороны квадрата параллельны.Значит, точки А и В лежат на прямой АВ, параллельной прямой у=х–0,5. Пусть это прямая у=х+m. Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m Расстояние между точками А и В d^2=(x_(B)–x_(A))^2+(y_(B)–y_(A))^2= = (x_(B)–x_(A))^2+(x_(B)–m–y_(A)+m)^2= =2• (x_(B)–x_(A))^2. Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD. Р–точка пересечения прямой у=х+m c осью ОУ. Р(0;m) Е– точка пересечения прямой у=х–0,5 с осью ОУ. Е(0;–0,5) РЕ=m+0,5 Прямые у=х+m и у=х–0,5 образуют с осью Ох угол 45°, а значит и с осью Оу угол 45°. РК=ВС=d=(m+0,5)•sin45°=(m+0,5)/√2. d^2=(m+0,5)^2/2. Все стороны квадрата равны. АВ=ВС, но ВС=РК, значит AB=PK. Получаем уравнение (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Так как точки А и В лежат на параболе, то у_(А)=4х^2_(А); у_(В)=4х^2_(В) и на прямой, то m=4х^2_(B)–x_(B)=4х^2_(А)–х_(А) или 4х^2_(B)–x_(B)=4х^2_(А)–х_(А) 4х^2_(B)-4х^2_(А)=x_(B)–х_(А) (x_(B)–х_(А))*(4x_(B)+4x_(A)-1)=0 Откуда х_(А)+х_(В)=0,25 ––––––––––––– Подставим х_(В)=0,25-х_(А) в уравнение: (m+0,5)^2/2=2•(x_(B)–x_(A))^2. 4•(2хВ–0,25)^2=(4x^2_(B)–xB+0,5)^2 Упрощаем 100х4B–20x3B–11x2B+1,2xB=0 (xB–0,1)(10xB–4)(10xB+3)=0 при xB=0,4 и х=–0,3 получим наибольшее значение d2=2•(2хВ–0,1)2=2•(2•0,4–0,1)2=2•0,72=0,98 d2=2•(2хВ–0,1)2= =2•(2•(–0,3)–0,1)2=2•(–0,7)2=0,98 S=d2=0,98. к задаче 13100

SOVA ✎ Раскрываем модули: 1) x больше или равно 0 |2x-4|=|x^2-a| ⇒ 2x-4=x^2-a или 2х-4=-x^2+a a=x^2-2x+4 или а=x^2+2x-4 1а) {x больше или равно 0 {a=x^2-2x+4 или {x больше или равно 0 {a=x^2+2x-4 2) x < 0 |-2x-4|=|x^2-a| -2x-4=x^2-a или -2х-4=-x^2+a 2a) {x < 0 {a=x^2+2x+4 или 2б) {x < 0 {a=x^2-2x-4 Применяем координатно параметрический метод. Строим графики в системе координат хОа. рис. 1 при a∈(3;4) рис.2 нет таких а > 0 к задаче 13093

SOVA ✎ Самая низшая оценка 6,5 Самая высшая 9,0 Они не учитываются. Остальные: 7,5+8,0+7,5+8,5=31,5 31,5*2,4=75,6 О т в е т. 75,6 к задаче 13078

SOVA ✎ 3^(2x+3)=3^(2x)*3^3=27*3^(2x). Неравенство принимает вид: 27*3^(2x)+3^(2x) < 30; 28*3^(2x) < 30 3^(2x) < 15/14 2x < log_(3)(15/14) x < (1/2) log_(3)(15/14) или х < log _(3) sqrt(15/14) О т в е т. (- бесконечность; log_(3)sqrt(15/14)) к задаче 13097

SOVA ✎ ОС=R R=asqrt(3)/3 OC=4sqrt(3)*(sqrt(3)/3)=4 OC^2_(1)=CC^2_(1)+OC^2=3^2+4^2=9+16=25 OC_(1)=5 к задаче 13083