ЗАДАЧА 4559

УСЛОВИЕ:

На горизонтальной поверхности стола лежит длинная доска, на которую помещён брусок массы m=9 кг. Брусок соединён с неподвижной стенкой лёгкой горизонтальной нерастянутой пружиной жёсткости k=30 Н/м. В начальный момент система покоится. Коэффициент трения между доской и бруском равен μ=0,21. Между доской и столом трения нет. Доску начинают двигать горизонтально с постоянным ускорением a = 1,8м/с^2. Через какое время после начала движения доски скорость бруска будет максимальна? Ответ выразите в секундах и округлите до сотых. Принять g = 10 м/с^2

Добавил slava191 , просмотры: ☺ 4695 ⌚ 22.10.2015. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ anohin_1998 ПОКАЗАТЬ РЕШЕНИЕ ЛУЧШЕЕ РЕШЕНИЕ!


ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
Ответ t=sqrt(2m1(mg-a)/ka) выглядит странно. Если взять a равным mg, то время получится нулевым, если бОльшим, чем mg, то вообще под корнем отрицательная величина получится. Также не ясно, как учитывается тот факт, что сначала мы имеем дело с силой трения покоя, которая меньше силы трения скольжения. ответить
Сначала регистрация
Там не (mg-a), а (?g-a)

РЕШЕНИЕ ОТ VyacheslavChekmenev ПОКАЗАТЬ РЕШЕНИЕ


ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
искомое время не найдено ответить
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ А={-5;-4;-3; -2; -1; 0; 1; 2; 3; 4; 5} к задаче 13105

SOVA ✎ к задаче 13099

SOVA ✎ х руб стоит пробка, (х+10)руб. стоит бутылка х+(х+10)=11 2х=1 х=0,5 0,5 руб стоит пробка. 10,5 руб стоит бутылка 10,5+0,5=11 руб стоит бутылка с пробкой. к задаче 13101

SOVA ✎ Cм. рисунок. Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х–0,5. Противоположные стороны квадрата параллельны.Значит, точки А и В лежат на прямой АВ, параллельной прямой у=х–0,5. Пусть это прямая у=х+m. Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m Расстояние между точками А и В d^2=(x_(B)–x_(A))^2+(y_(B)–y_(A))^2= = (x_(B)–x_(A))^2+(x_(B)–m–y_(A)+m)^2= =2• (x_(B)–x_(A))^2. Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD. Р–точка пересечения прямой у=х+m c осью ОУ. Р(0;m) Е– точка пересечения прямой у=х–0,5 с осью ОУ. Е(0;–0,5) РЕ=m+0,5 Прямые у=х+m и у=х–0,5 образуют с осью Ох угол 45°, а значит и с осью Оу угол 45°. РК=ВС=d=(m+0,5)•sin45°=(m+0,5)/√2. d^2=(m+0,5)^2/2. Все стороны квадрата равны. АВ=ВС, но ВС=РК, значит AB=PK. Получаем уравнение (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Так как точки А и В лежат на параболе, то у_(А)=4х^2_(А); у_(В)=4х^2_(В) и на прямой, то m=4х^2_(B)–x_(B)=4х^2_(А)–х_(А) или 4х^2_(B)–x_(B)=4х^2_(А)–х_(А) 4х^2_(B)-4х^2_(А)=x_(B)–х_(А) (x_(B)–х_(А))*(4x_(B)+4x_(A)-1)=0 Откуда х_(А)+х_(В)=0,25 ––––––––––––– Подставим х_(В)=0,25-х_(А) в уравнение: (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Получаем 4•(2х_(В)–0,25)^2=(4x^2_(B)–x_(B)+0,5)^2 Упрощаем 16x^4_(B)-8x^3_(B)-11x^2_(B)+3x_(B)=0; x_(B)*(x_(B)+1)*(4x_(B)-1)^2=0; Наибольшее значение d при х_(В)=-1 х_(А)=1,25 d^2=2*(x_(B)-x_(A))^2=2*(-2,25)^2=10,125 S=d^2=10,125=81/8 к задаче 13100

SOVA ✎ Раскрываем модули: 1) x больше или равно 0 |2x-4|=|x^2-a| ⇒ 2x-4=x^2-a или 2х-4=-x^2+a a=x^2-2x+4 или а=x^2+2x-4 1а) {x больше или равно 0 {a=x^2-2x+4 или {x больше или равно 0 {a=x^2+2x-4 2) x < 0 |-2x-4|=|x^2-a| -2x-4=x^2-a или -2х-4=-x^2+a 2a) {x < 0 {a=x^2+2x+4 или 2б) {x < 0 {a=x^2-2x-4 Применяем координатно параметрический метод. Строим графики в системе координат хОа. рис. 1 при a∈(3;4) рис.2 нет таких а > 0 к задаче 13093