ЗАДАЧА 4559

УСЛОВИЕ:

На горизонтальной поверхности стола лежит длинная доска, на которую помещён брусок массы m=9 кг. Брусок соединён с неподвижной стенкой лёгкой горизонтальной нерастянутой пружиной жёсткости k=30 Н/м. В начальный момент система покоится. Коэффициент трения между доской и бруском равен μ=0,21. Между доской и столом трения нет. Доску начинают двигать горизонтально с постоянным ускорением a = 1,8м/с^2. Через какое время после начала движения доски скорость бруска будет максимальна? Ответ выразите в секундах и округлите до сотых. Принять g = 10 м/с^2

Показать решение

РЕШЕНИЕ ОТ anohin_1998:


ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
Ответ t=sqrt(2m1(mg-a)/ka) выглядит странно. Если взять a равным mg, то время получится нулевым, если бОльшим, чем mg, то вообще под корнем отрицательная величина получится. Также не ясно, как учитывается тот факт, что сначала мы имеем дело с силой трения покоя, которая меньше силы трения скольжения. ответить
Сначала регистрация
Там не (mg-a), а (?g-a)

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 4888 ⌚ 22.10.2015. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ VyacheslavChekmenev


ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
искомое время не найдено ответить
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 1. Пусть один катет а=5 , второй катет b=12, тогда по теореме Пифагора с=sqrt(a^2+b^2)=sqrt(5^2+12^2)=sqrt(25=144)=sqrt(169)= =13. S(полн.)=2S(осн.)+S(бок.)=2*(1/2)a*b+P(осн.)*H= =2*(1/2)*5*12+(5+12+13)*8=60+240=300 2.Пусть сторона верхнего основания равна а, нижнего b. Тогда S(полн.)=S1(осн.)+S2(осн.)+S(бок.)= =a^2+b^2+4S(трапеции)= =a^2+b^2+4*(a+b)*h/2 h-апофема боковой грани. По теореме Пифагора h^2=H^2+((b-a)/2))^2=4^2+(4-1)^2=16+9=25 h=5 (см. рис.) S(полн.)=2^2+8^2+4*(2+8)*5/2=4+64+100=168 к задаче 15378

MEOW_LIN ✎ cos(pi/3)+sqrt(2)*sin(pi/4)=1/2+sqrt(2)*sqrt(2)/2=1/2+1=1,5 к задаче 15377

SOVA ✎ 1 cпособ. Применяем формулу Тейлора. см. приложение. f(x)=1/(x^2+3x+2) a=-4 f(-4)=1/6 f`(x)=-(2x+3)/(x^2+3x+2)^2; f`(-4)=-(-8+3)/6^2=5/36 f``(x)=-(2*(x^2+3x+2)^2-2(x^2+3x+2)*(2x+3)*(2x+3))/(x^2+3x+2)^4= =(6x^2+18x+14)/(x^2+3x+2)^3 f``(-4)=38/216 ... Подставляем найденные значения коэффициентов Тейлора в формулу. Получим ответ ( см. приложение) 2 способ. Известно разложение функции f(x)=1/(1-x) в ряд: 1/(1-x)=1+x+x^2+...+x^(n)+..., которое при |x| < 1 представляет сумму бесконечно убывающей геометрической прогрессии. Ряд сходится для всех х, |x| < 1 Данная функция представима в виде разности двух дробей: 1/(x^2+3x+2)=(1/(1+x)) -(1/(2+x)) Разложим 1/(1+х)=1-х+x^2-x^3+...+(-1)^n*x^n+... Ряд сходится при |x| < 1 1/(2+x)=(1/2)*(1/(1+(x/2)))= =(1/2)*(1-(х/2)+(x/2)^2-(x/2)^3+...+(-1)^n*(x/2)^n+...) Ряд сходится при всех |x/2| < 1 или |x| < 2 Тогда 1/(x^2+3x+2)=(1/(1+x)) -(1/(2+x))= =(1-х+x^2-x^3+...+(-1)^n*x^n+...)+ +(1/2)*(1-(х/2)+(x/2)^2-(x/2)^3+...+(-1)^n*(x/2)^n+...)= (1+(1/2))-(1+(1/4))x+(1+(1/8))x^3+... ...+ (-1)^n(1+(1/2^(n+1))x^n+... Ряд сходится как разность двух сходящихся рядов на пересечении областей сходимсти двух рядов, а это значит на множестве (-1;1) к задаче 15369

MEOW_LIN ✎ 1) 0,86/2,15=0,4 2) 6+3/100+6/1000=6+0,03+0,006=6,036 к задаче 15375

SOVA ✎ Применяем формулу: sin^3x=(1/4)*(3sinx-sin3x)=(3/4)sinx-(1/4)sin3x Так как sinx=x-(x^3/3!)+(x^5/5!)-(x^7/7!)+... ...+ (-1)^(n-1)*x^(2n-1)/(2n-1)! + ... Ряд сходится на (-бесконечность; + бесконечность) Тогда sin3x=(3x)-((3x)^3/3!)+((3x)^5/5!)-((3x)^7/7!)+... ... + (-1)^(n-1)*(3x)^(2n-1)/(2n-1)! + ... Ряд сходится на (-бесконечность; + бесконечность) sin^3x=(3/4)*(x-(x^3/3!)+(x^5/5!)-(x^7/7!)+... ... + (-1)^(n-1)*x^(2n-1)/(2n-1)! + ...)- -(1/4)*((3x)-((3x)^3/3!)+((3x)^5/5!)-((3x)^7/7!)+... ...+ (-1)^(n-1)*(3x)^(2n-1)/(2n-1)! + ...)= =(3/4)x-(3/4)x +((-3x^3)/(4*3!)+(3^3x^3)/(4*3!))+ +((3x^5)/(4*5!)-(3^5x^5)/(4*5!))+... ...+(-1)^(2n-1)(3-3^(2n-1))x^(2n-1)/4*(2n-1)!+ ... = cм. приложение. Ряд сходится на ( - бесконечность; + бесконечность) как разность двух сходящихся рядов. к задаче 15371