Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 3959 В параллелограмм вписана окружность. а)...

Условие

В параллелограмм вписана окружность.
а) Докажите, что этот параллелограмм – ромб.
б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 5 и 3. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.

математика 10-11 класс 26521

Решение

KL и MN находим по теореме косинусов. Так как β + α = 180, можно выразить α через β и подставить в косинус, по формуле приведения (cos(180–a) = –cosa) косинус станет отрицательным. Теперь можно составить уравнением исходя из того, что KL2 + KN2 = KM2 это следует из теоремы Пифагора. Только учтите, что KM = 2OK = 2R. Решив уравнение, находим косинус α и соответственно 2 стороны (x и y) прямоугольника. Далее площадь S = xy

Ответ: 15*sqrt(15)/2

Обсуждения
Вопросы к решению (3)

Все решения

В окружности будет прямоугольник, так как из подобия треугольников понятно, что диагонали ромба будут параллельны сторонам четырехугольника...)
А диагонали ромба пересекаются под прямым углом...))

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК