ЗАДАЧА 3630 В вершинах равнобедренного треугольника

УСЛОВИЕ:

В вершинах равнобедренного треугольника со сторонами а, 5а, 5а находятся неподвижно три небольших по размерам положительно заряженных шарика, связанных попарно тремя легкими непроводящими нитями. Каждый из шариков, связанных короткой нитью, имеет массу m и заряд q. Третий шарик имеет массу 2m и заряд 5q. Короткую нить пережигают, и шарики начинают двигаться. В момент, когда шарики оказались на одной прямой, скорость шариков массой m оказалась v.

1) Найдите в этот момент скорость шарика массой 5m.

2) Найдите q, считая известными m, v, а.

Показать решение

РЕШЕНИЕ:


ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

В решение

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 611 ⌚ 23.09.2015. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Увы, но решение никто не написал...

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ к задаче 13099

SOVA ✎ х руб стоит пробка, (х+10)руб. стоит бутылка х+(х+10)=11 2х=1 х=0,5 0,5 руб стоит пробка. 10,5 руб стоит бутылка 10,5+0,5=11 руб стоит бутылка с пробкой. к задаче 13101

SOVA ✎ Cм. рисунок. Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х–0,5. Противоположные стороны квадрата параллельны.Значит, точки А и В лежат на прямой АВ, параллельной прямой у=х–0,5. Пусть это прямая у=х+m. Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m Расстояние между точками А и В d^2=(x_(B)–x_(A))^2+(y_(B)–y_(A))^2= = (x_(B)–x_(A))^2+(x_(B)–m–y_(A)+m)^2= =2• (x_(B)–x_(A))^2. Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD. Р–точка пересечения прямой у=х+m c осью ОУ. Р(0;m) Е– точка пересечения прямой у=х–0,5 с осью ОУ. Е(0;–0,5) РЕ=m+0,5 Прямые у=х+m и у=х–0,5 образуют с осью Ох угол 45°, а значит и с осью Оу угол 45°. РК=ВС=d=(m+0,5)•sin45°=(m+0,5)/√2. d^2=(m+0,5)^2/2. Все стороны квадрата равны. АВ=ВС, но ВС=РК, значит AB=PK. Получаем уравнение (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Так как точки А и В лежат на параболе, то у_(А)=4х^2_(А); у_(В)=4х^2_(В) и на прямой, то m=4х^2_(B)–x_(B)=4х^2_(А)–х_(А) или 4х^2_(B)–x_(B)=4х^2_(А)–х_(А) 4х^2_(B)-4х^2_(А)=x_(B)–х_(А) (x_(B)–х_(А))*(4x_(B)+4x_(A)-1)=0 Откуда х_(А)+х_(В)=0,25 ––––––––––––– Подставим х_(В)=0,25-х_(А) в уравнение: (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Получаем 4•(2х_(В)–0,25)^2=(4x^2_(B)–x_(B)+0,5)^2 Упрощаем 16x^4_(B)-8x^3_(B)-11x^2_(B)+3x_(B)=0; x_(B)*(x_(B)+1)*(4x_(B)-1)^2=0; Наибольшее значение d при х_(В)=-1 х_(А)=1,25 d^2=2*(x_(B)-x_(A))^2=2*(-2,25)^2=10,125 S=d^2=10,125=81/8 к задаче 13100

SOVA ✎ Раскрываем модули: 1) x больше или равно 0 |2x-4|=|x^2-a| ⇒ 2x-4=x^2-a или 2х-4=-x^2+a a=x^2-2x+4 или а=x^2+2x-4 1а) {x больше или равно 0 {a=x^2-2x+4 или {x больше или равно 0 {a=x^2+2x-4 2) x < 0 |-2x-4|=|x^2-a| -2x-4=x^2-a или -2х-4=-x^2+a 2a) {x < 0 {a=x^2+2x+4 или 2б) {x < 0 {a=x^2-2x-4 Применяем координатно параметрический метод. Строим графики в системе координат хОа. рис. 1 при a∈(3;4) рис.2 нет таких а > 0 к задаче 13093

SOVA ✎ Самая низшая оценка 6,5 Самая высшая 9,0 Они не учитываются. Остальные: 7,5+8,0+7,5+8,5=31,5 31,5*2,4=75,6 О т в е т. 75,6 к задаче 13078