ЗАДАЧА 12765 10) log(2x^2+6x-8)(x^2+3x+2)=1,

УСЛОВИЕ:

10) log(2x^2+6x-8)(x^2+3x+2)=1, [sqrt(-21); log(3/4)(1/2)]

Добавил Karisaidova , просмотры: ☺ 24 ⌚ 09.01.2017. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ SOVA ПОКАЗАТЬ РЕШЕНИЕ ЛУЧШЕЕ РЕШЕНИЕ!

ОДЗ:
{x^2+3x+2 > 0;
{2x^2+6x-8 > 0;
{2x^2+6x-8≠1.

По определению логарифма
2x^2+6x-8=x^2+3x+2;
x^2+3x-10=0
x=-5 или х=2
Корни удовлетворяют всем неравенствам, определяющих ОДЗ.Достаточно подставить х=-5 и х=2 в каждое неравенство и проверить верность числовых неравенств, чем решать систему трех неравенств.

-5 < - sqrt(21)
-5 не принадлежит указанному промежутку.
Так как
1/2=8/16 < 9/16 и логарифмическая функция с основанием (3/4)- убывающая, то
log_(3/4)(1/2) > log_(3/4)(9/16)=2
х=2- корень уравнения принадлежащий указанному промежутку .
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

MargaritaPyrkina ✎ к задаче 12958

MargaritaPyrkina ✎ к задаче 12959

MargaritaPyrkina ✎ к задаче 12968

SOVA ✎ 1) S=∫^1_(-1)(0-(x^2-1))dx=(x-(x^3/3))^1_(-1)=4/3; 2)S=∫^0_(-1)(-x-(x^3))dx=((x^4/4)-(x^2/2))^0_(-1)=1/4; 3)S=∫^1_0(5x-2x)dx=(3^2/2))^1_0=3/2. к задаче 12963

SOVA ✎ Замена переменной 7^x=t; t > 0 (t-1)/3=(7t+49)/7t Применяем основное свойство пропорции 7t*(t-1)=3*(7t+49) 7t^2-28t-147=0 t^2-4t-21=0 D=16+4*21=100 t=7 или t=-3 - не удовл. условию t > 0 7^x=7 x=1 О т в е т. х=1 к задаче 12965