ЗАДАЧА 10294 В некотором государстве 30 городов.

УСЛОВИЕ:

В некотором государстве 30 городов. Каждая пара городов соединена авиарейсом одной из двух авиакомпаний. Оказалось, что из каждого города выходит ровно 10 авиарейсов первой авиакомпании. Назовем тройку городов A, B, C замкнутой, если все три авиарейса AB, BC, CA осуществляются одной авиакомпанией. Каково наибольшее возможное количество замкнутых троек городов может быть в этом государстве?

Добавил slava191 , просмотры: ☺ 1461 ⌚ 01.10.2016. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ vk165902784 ПОКАЗАТЬ РЕШЕНИЕ ЛУЧШЕЕ РЕШЕНИЕ!




ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
Почему мы умножаем на 20, когда находим разноцветные треугольники? ответить
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ А={-5;-4;-3; -2; -1; 0; 1; 2; 3; 4; 5} к задаче 13105

SOVA ✎ к задаче 13099

SOVA ✎ х руб стоит пробка, (х+10)руб. стоит бутылка х+(х+10)=11 2х=1 х=0,5 0,5 руб стоит пробка. 10,5 руб стоит бутылка 10,5+0,5=11 руб стоит бутылка с пробкой. к задаче 13101

SOVA ✎ Cм. рисунок. Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х–0,5. Противоположные стороны квадрата параллельны.Значит, точки А и В лежат на прямой АВ, параллельной прямой у=х–0,5. Пусть это прямая у=х+m. Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m Расстояние между точками А и В d^2=(x_(B)–x_(A))^2+(y_(B)–y_(A))^2= = (x_(B)–x_(A))^2+(x_(B)–m–y_(A)+m)^2= =2• (x_(B)–x_(A))^2. Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD. Р–точка пересечения прямой у=х+m c осью ОУ. Р(0;m) Е– точка пересечения прямой у=х–0,5 с осью ОУ. Е(0;–0,5) РЕ=m+0,5 Прямые у=х+m и у=х–0,5 образуют с осью Ох угол 45°, а значит и с осью Оу угол 45°. РК=ВС=d=(m+0,5)•sin45°=(m+0,5)/√2. d^2=(m+0,5)^2/2. Все стороны квадрата равны. АВ=ВС, но ВС=РК, значит AB=PK. Получаем уравнение (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Так как точки А и В лежат на параболе, то у_(А)=4х^2_(А); у_(В)=4х^2_(В) и на прямой, то m=4х^2_(B)–x_(B)=4х^2_(А)–х_(А) или 4х^2_(B)–x_(B)=4х^2_(А)–х_(А) 4х^2_(B)-4х^2_(А)=x_(B)–х_(А) (x_(B)–х_(А))*(4x_(B)+4x_(A)-1)=0 Откуда х_(А)+х_(В)=0,25 ––––––––––––– Подставим х_(В)=0,25-х_(А) в уравнение: (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Получаем 4•(2х_(В)–0,25)^2=(4x^2_(B)–x_(B)+0,5)^2 Упрощаем 16x^4_(B)-8x^3_(B)-11x^2_(B)+3x_(B)=0; x_(B)*(x_(B)+1)*(4x_(B)-1)^2=0; Наибольшее значение d при х_(В)=-1 х_(А)=1,25 d^2=2*(x_(B)-x_(A))^2=2*(-2,25)^2=10,125 S=d^2=10,125=81/8 к задаче 13100

SOVA ✎ Раскрываем модули: 1) x больше или равно 0 |2x-4|=|x^2-a| ⇒ 2x-4=x^2-a или 2х-4=-x^2+a a=x^2-2x+4 или а=x^2+2x-4 1а) {x больше или равно 0 {a=x^2-2x+4 или {x больше или равно 0 {a=x^2+2x-4 2) x < 0 |-2x-4|=|x^2-a| -2x-4=x^2-a или -2х-4=-x^2+a 2a) {x < 0 {a=x^2+2x+4 или 2б) {x < 0 {a=x^2-2x-4 Применяем координатно параметрический метод. Строим графики в системе координат хОа. рис. 1 при a∈(3;4) рис.2 нет таких а > 0 к задаче 13093