ЗАДАЧА 10289

УСЛОВИЕ:

Две окружности ω и Ω радиусов R=13.25 и r=9 касаются внутренним образом. Хорда AB окружности Ω касается окружности ω в точке C. Найдите длину хорды AB, если известно, что AC:BC=1:2.

РЕШЕНИЕ ОТ SOVA:

Окружности касаются внутренним образом. Ни одна из хорд меньшей окружности не может быть касательной к большей окружности.
Пусть хорда АВ окружности радиуса 13,25 касается окружности радиуса 9 в точке С.
См. рисунок.
ОС=ОМ=ОТ=9 - радиус меньшей окружности.
РМ=PN=PB=13,25 - радиус большей окружности.
РО=РМ-ОМ=13,25-9=4,25
Проведем РК⊥АВ.
РК- часть диаметра окружности радиуса 13,25.
Диаметр, перпендикулярный хорде делит эту хорду пополам.
Пусть АС=х, ВС=2х. По условию АС:ВС=х:2х=1:2.
АВ=АС+СВ=х+2х=3х.
Значит АК=КВ=1,5х;
СК=АК-АС=1,5х-х=0,5х.
Из прямоугольного треугольника РКВ:
РК^2=PB^2-KB^2
PK^2=(13,25)^2-(1,5x)^2
Рассмотрим прямоугольную трапецию ОСКР.
Проведем высоту РЕ.
Из прямоугольного треугольника ОЕР:
ОЕ^2+PE^2=OP^2
РЕ=КС=0,5х
EC=PK=√((13,25)^2-(1,5x)^2)
ОЕ=9-√((13,25)^2-(1,5x)^2)
(9-√((13,25)^2-(1,5x)^2))^2 +(0,5х)^2=(4,25)^2;

81-18√((13,25)^2-(1,5x)^2)+(13,25)^2-(1,5x)^2+0,25x^2=(4,25)^2.
или
18√((13,25)^2-(1,5x)^2)=81+(13,25)^2-(4,25)^2-2x^2;
18√((13,25)^2-(1,5x)^2)=81+17,5•9-2x^2;
18√((13,25)^2-(1,5x)^2)=9•26,5-2x^2.
Возводим в квадрат:
4х^4-225x^2=0
x^2(4x^2-225)=0
x^2=225/4;
x=15/2=7,5.
AB=3x=22,5.
О т в е т. АВ=22,5.

ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
у вас тут опечатка? Рассмотрим прямоугольную трапецию ОСКР. Проведем высоту РЕ. Из прямоугольного треугольника МЕР: МЕ2+PE2=OP2 РЕ=КС=0,5х EC=PK=√((13,25)2–(1,5x)2) МЕ=9–√((13,25)2–(1,5x)2) ответить
Сначала регистрация
Да, описка.Из прямоугольного треугольника ОЕР: ОЕ2+PE2=OP2 ОЕ=9–√((13,25)2–(1,5x)2)

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 3102 ⌚ 01.10.2016. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Лучший ответ к заданию выводится как основной

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk52755273 ✎ См. на картинке к задаче 16639

vk318474530 ✎ у1' = y2' и y1 = y2. Если второе условие не выполняется, то значит, что касательная в точке только параллельна прямой у=2х, но не совпадает с ней. 1) (2x)' = (x^3+5x^2+9x+3)' - > x=-1 или х=-7/3 2) Подставим х=-1 в у1 и у2. у1(-1) = -2; у2(-1) = -1+5-9+3 = -2 3) у1(-7/3) ≠ y2(-7/3) - > касательная в точке х=-7/3 не совпадает с прямой у1=2х, а параллельна ей. Ответ: -1 к задаче 16659

slava191 ✎ 111 к задаче 16644

slava191 ✎ Текст решения к задаче 16635

vk373384374 ✎ Конституционное право к задаче 16620