ЗАДАЧА 10288 Даны парабола y=10x^2 и прямая y=x-0.2 .

УСЛОВИЕ:

Даны парабола y=10x^2 и прямая y=x-0.2 . Какую наибольшую площадь может иметь квадрат, две вершины которого лежат на параболе, а две другие – на этой прямой?

Показать решение

РЕШЕНИЕ ОТ SOVA:

Cм. рисунок.
Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х-0,2.
Противоположные стороны квадрата параллельны.Значит,
точки А и В лежат на прямой АВ, параллельной прямой у=х-0,2.
Пусть это прямая у=х+m.
Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m
Расстояние между точками А и В
d^2=(x_(B)-x_(A))^2+(y_(B)-y_(A))^2=
= (x_(B)-x_(A))^2+(x_(B)-m-y_(A)+m)^2=
=2• (x_(B)-x_(A))^2.
Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD.
Р-точка пересечения прямой у=х+m c осью ОУ.
Р(0;m)
Е- точка пересечения прямой у=х-0,2 с осью ОУ.
Е(0;-0,2)
РЕ=m+0,2
Прямые у=х+m и у=х-0,2 образуют с осью Ох угол 45°, а значит и с осью Оу - 45°.
РК=ВС=d=(m+0,2)•sin45°=(m+0,2)/√2.
d^2=(m+0,2)^2/2.
Все стороны квадрата равны.
АВ=ВС, но ВС=РК, значит
AB=PK. Получаем уравнение
(m+0,2)^2/2=2•(x_(B)-x_(A))^2.
-----------------------------
Так как точки А и В лежат на параболе, то
у_(А)=10х^2_(А); у_(В)=10х^2_(В)
и на прямой, то
m=10х^2_(B)-x_(B)=10х^2_(А)-х_(А) или
10х^2_(А)-х_(А)=10х^2_(B)-x_(B).
Откуда х_(А)+х_(В)=0,1.
-------------
4•(2х_(В)-0,1)^2=(10x^2_(B)-x_(B)+0,2)^2
Упрощаем
100х^4_(B)-20x^3_(B)-11x^2_(B)+1,2x_(B)=0
(x_(B)-0,1)(10x_(B)-4)(10x_(B)+3)=0
при x_(B)=0,4 и х=-0,3 получим наибольшее значение
d^2=2•(2х_(В)-0,1)^2=2•(2•0,4-0,1)^2=2•0,7^2=0,98
d^2=2•(2х_(В)-0,1)^2=
=2•(2•(-0,3)-0,1)^2=2•(-0,7)^2=0,98
S=d^2=0,98.

ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация
2•(2хВ–0,1)2=(10xB–xB+0,2)2 Упрощаем 100х4B–20x3B–11x2B+1,2xB=0 (xB–0,1)(10xB–4)(10xB+3)=0 , у меня подобная задача , но я незнаю решения ответить
Сначала регистрация
Кубическое уравнение. Искала корни подбором. Потом разложила на множители. Корни находятся среди делителей свободного слагаемого и коэффициента перед х в кубе.

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 3290 ⌚ 01.10.2016. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Лучший ответ к заданию выводится как основной

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 2,1/(6,4-3,6)=2,1/2,8=21/28=3/4=0,75 (4^(-4))^(-3)/4^(13)=4^(-4*(-3))/4^(13)=4^(12)/4^(13)=1/4=0,25 m=2E/v^2=2*54/3^2=12 (sqrt(8)-sqrt(18))*(sqrt(8)+sqrt(18))= =(sqrt(8))^2-(sqrt(18))^2= =8-18=-10 к задаче 15410

SOVA ✎ 6 вершин призмы и АВСD - вершины сечения. СD|| AB. Секущая плоскость пересекает верхнее и нижнее основание по параллельным прямым. О т в е т. 10 к задаче 15409

vk373384374 ✎ Р=FV V=72×1000=72000/3600=20 1000×20/1=20кВт Ответ:20 к задаче 15406

SOVA ✎ Метод интервалов. Находим нули числителя: x^2+2x-15=0 D=4+60=64 x=(-2-8)/2=-5; x=(-2+8)/2=3 нули знаменателя: х+1=0 Отмечаем эти точки на числовой прямой ____ (-5) _____ (-1) ___ (3)___ и расставляем знаки функции f(x)=(x^2+2x-15)/(x+1) f(10)=(100+20-15)/(10+1) > 0 Cтавим + справа от точки 3 и знаки чередуем : __-__ (-5) __+___ (-1) _-__ (3)_+__ О т в е т. (-бесконечность; -5) U (-1;3) Если неравенство нестрогое: (x^2+2x-15)/(x+1) меньше или равно 0, то точки -5 и 3 отмечаем заполненным кружком ( здесь кв. скобки): __-__ [-5] __+___ (-1) _-__ [3] _+__ О т в е т. (-бесконечность; -5] U (-1;3] к задаче 15401

SOVA ✎ sin^2x+cos^2x=1 ctg^2x=(1/sin^2x)-1 1+sinx+(1/sin^2x)-1=0 sinx+(1/sin^2x)=0 (sin^3x+1)/sin^2x=0 {sin^3x+1=0 {sin^2x≠0 sinx=-1 x=(-π/2)+2πk, k∈Z О т в е т. а)(-π/2)+2πk, k∈Z б) Указанному промежутку принадлежит один корень: х=(-π/2)+2π=3π/2=6π/4 < 7π/4 к задаче 15400