ЗАДАЧА 6613 Требовалось написать программу, которая

УСЛОВИЕ:

Требовалось написать программу, которая вводит с клавиатуры координаты точки на плоскости (х, у — действительные числа) и определяет принадлежность точки заштрихованной области, включая её границы. Программист торопился и написал программу неправильно.

Последовательно выполните следующее:

1) Приведите пример таких чисел х, у, при которых программа неверно решает поставленную задачу.

2) Укажите, как нужно доработать программу, чтобы не было случаев её неправильной работы. (Это можно сделать несколькими способами, поэтому можно указать любой способ доработки исходной программы.)

Показать решение

РЕШЕНИЕ:

1. Например, х = 1, у = -1. Подойдёт любая точка, у которой у < 0 или х < 0 или (у > = 0 и у < = cos(x) и х > 1.575).

2. Возможная доработка (Паскаль):

if (у>=0) and (х<=1.575) and (y<=cos(x)) and (х>=0)
then write('принадлежит')
else write('не принадлежит')

Возможны и другие способы решения.
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

В решение

Нужна помощь?

Опубликовать

Готовься с нами!

Добавил slava191 , просмотры: ☺ 1088 ⌚ 09.02.2016. информатика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Увы, но решение никто не написал...

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

slava191 ✎ Эта задача добавлялась дважды 1) [link=http://reshimvse.com/zadacha.php?id=7074] 2) [link=http://reshimvse.com/zadacha.php?id=12725] к задаче 14555

SOVA ✎ f`(x)=6x-1 f`(-1)=-7 f(-1)=3*(-1)^2-(-1)=3+1=4 Уравнение касательной у-4=-7*(х+1) или у=-7х-3 Уравнение нормали у-4=(1/7)(х+1) или у=(1/7)х + 4 целых 1/7 к задаче 14554

SOVA ✎ ОДЗ:|x| > 0, значит х≠0 |x|≠1 x≠-1; x≠1 log_(|x|)x^2=2log_(|x|)|x|=2; log^2_(|x|)(x^2)=4 4+log_(2)x^2 меньше или равно 8; log_(2)x^2 меньше или равно 4; log_(2)x^2 меньше или равно log_(2)16; x^2 меньше или равно16; -4 меньше или равно х меньше или равно 4 С учетом ОДЗ получаем О т в е т. [-4;-1)U(-1;0)U(0;1)U(1;4] к задаче 14544

SOVA ✎ ОДЗ: {1/x > 0, ⇒ x∈ (0;+ ∞) {x^2+3x-9 > 0 ⇒ x∈ (- ∞;-1,5-sqrt(10))U(-1,5+sqrt(10);+ ∞) {x^2+3x+(1/x)-10 > 0 ⇒x^2+3x-10 > (-1/x) см решение на рисунке ОДЗ: x∈(b:+бесконечность), b < 2 log_(3)((1/x)*(x^2+3x-9) меньше или равно log_(3)(x2+3x+1/x–10) Логарифмическая функция с основанием 3 > 1 монотонно возрастает. (1/х)*(x^2+3x-9) меньше или равно x^2+3x+(1/x) -10; (1/х)*(x^2+3x-9) -x^2-3x-(1/x)+10 меньше или равно 0; (1/х)*(x^2+3x-9-1)-(x^2+3x-10) меньше или равно 0; (x^2+3x-10)*((1/x)-1) меньше или равно 0; (x-2)(x+5)(1-x)/x меньше или равно 0. Применяем метод интервалов: _-___ [-5] __+__ (0) __-__ [1] ___+____ [2] __-_ (-бесконечность;-5]U(0;1]U[2;+бесконечность) C учетом ОДЗ получаем ответ [2;+ бесконечность) к задаче 14543

SOVA ✎ 1)16*2=32 км проехал первый турист 2)56-16=40 км в час разница скоростей туриста на велосипеде и туриста на мотоцикле. 3)32:40=0,8 часа (через 0,8 часа мотоциклист догонит велосипедиста) 4)56*0,8=44,8 км от места старта мотоциклист догонит велосипедиста. Велосипедист за это время проедет 16*0,8=12,8 км 44,8-12,8=32 км расстояние между ними в момент начала старта мотоциклиста. к задаче 14546