ЗАДАЧА 6444 Рост древесного стебля в толщину

УСЛОВИЕ:

Рост древесного стебля в толщину происходит за счет деления клеток

1) кожицы
2) луба
3) камбия
4) сердцевины

Показать решение

РЕШЕНИЕ:

Камбий –боковая меристема (образовательная ткань)
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

3

Нужна помощь?

Опубликовать

Готовься с нами!

Добавил slava191 , просмотры: ☺ 680 ⌚ 06.02.2016. биология 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ x^2+10x+24=0 D=10^2-4*24=100-96=4 x1=(-10-2)/2 или x2=(-10+2)/2 x1=-6 или х2=-4 О т в е т. -6; -4. к задаче 16082

SOVA ✎ ОДЗ: {(3/x) > 0 ⇒ x > 0 {(3/x)≠1 ⇒ x≠3 {9/(24-2x) > 0 ⇒ 24-2x > 0 ⇒ x < 12 ОДЗ: х∈(0;3)U(3;12) log_(3/x)(9/(24-2x)) ≤ 2*log_(3/x)(3/х); log_(3/x)(9/(24-2x)) ≤ log_(3/x)(3/х)^2. Применяем метод рационализации логарифмических неравенств: ((3/х)-1)*((9/(24-2х)) - (9/x^2)) ≤0 (3-x)*9*(x^2+2x-24)/(x^3*(24-2x))≤0 9*(x-3)*(x+6)*(x-4)/(2x^3*(x-12))≤0 Применяем метод интервалов с учетом ОДЗ: (0) _-___ (3) _+__[4] ___-____ (12) О т в е т. (0;3)U[4;12) к задаче 16090

u17864292 ✎ Покрыты кутикулой к задаче 16080

SOVA ✎ см. рисунок, точки возможного максимума отмечены на рисунке. к задаче 16072

SOVA ✎ Cкладываем оба уравнения: (2+а)у=2-2a^2; При а≠-2 у=(2-2a^2)/(2+a); x=2-a-2y=(4-a^2-4+4a^2)/(2+a)=3a^2/(2+a)- единственное решение. О т в е т. (-бесконечность;-2)U(-2; +бесконечность) к задаче 15974