ЗАДАЧА 4780 Ученые опросили группу 45-летних жителей

УСЛОВИЕ:

Ученые опросили группу 45-летних жителей страны Z. Женщинам и мужчинам задавали вопрос: «Почему снижается воспитательный потенциал семьи?* Результаты опроса представлены в гистограмме.
Какие выводы можно сделать из полученных результатов? Выберите из списка нужные позиции и запишите цифры, под которыми они указаны.
1) Мужчины и женщины единодушны в определении главного фактора, снижающего воспитательный потенциал семьи.
2) Мужчины в большей степени, чем женщины, ощущают нехватку знаний, необходимых для воспитания детей.
3) Плохие отношения между родителями как причина снижения воспитательного потенциала семьи недооцениваются опрошенными.
4) Женщины более негативно оценивают вмешательство родственников в воспитание детей, чем мужчины.
5) При оценке различных факторов, влияющих на воспитание детей, мужчины в меньшей степени, чем женщины, придают значение составу семьи.

Показать решение

РЕШЕНИЕ:

25
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

25

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Обществознанию? А почему не с нами?
Начать подготовку

Добавил Anton , просмотры: ☺ 2898 ⌚ 28.10.2015. обществознание 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Увы, но решение никто не написал...

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 1)cos(x/2)=1/2 x/2=± (π/3)+2πk, k∈Z x=± (2π/3)+4πk, k∈Z 2) cosx=sqrt(3)/2 x=± (π/6)+2πk, k∈Z к задаче 13010

SOVA ✎ По определению: параболой называется геометрическое место точек, равноудаленных от фокуса и директрисы. Пусть М(х;у)- любая точка параболы. d_(1)=FM=sqrt((x-5)^2+(y+3)^2) d_(2)=|y-1| d_(1)=d_(2) sqrt((x-5)^2+(y+3)^2)=|y-1| Возводим в квадрат и преобразовываем (x-5)^2+(y+3)^2=(y-1)^2 (x-5)^2=(y-1)^2-(y+3)^2; (x-5)^2=(y-1-y-3)*(y-1+y+3) (x-5)^2=-8(y+1) О т в е т. (x-5)^2=-8(y+1) (у+3)^2=8(x-3) к задаче 13008

SOVA ✎ По определению: параболой называется геометрическое место точек, равноудаленных от фокуса и директрисы. Пусть М(х;у)- любая точка параболы. d_(1)=FM=sqrt((x-5)^2+(y+3)^2) d_(2)=|x-1| d_(1)=d_(2) sqrt((x-5)^2+(y+3)^2)=|x-1| Возводим в квадрат и преобразовываем (x-5)^2+(y+3)^2=(x-1)^2 (y+3)^2=(x-1)^2-(x-5)^2; (y+3)^2=(x-1-x+5)*(x-1+x-5) (y+3)^2=8(x-3) О т в е т. (y+3)^2=8(x-3) к задаче 13007

SOVA ✎ По определению: параболой называется геометрическое место точек, равноудаленных от фокуса и директрисы. Пусть М(х;у)- любая точка параболы. d_(1)=FM=sqrt((x-5)^2+(y+3)^2) d_(2)=|x-1| d_(1)=d_(2) sqrt((x-5)^2+(y+3)^2)=|x-1| Возводим в квадрат и преобразовываем (x-5)^2+(y+3)^2=(x-1)^2 (y+3)^2=(x-1)^2-(x-5)^2; (y+3)^2=(x-1-x+5)*(x-1+x-5) (y+3)^2=8(x-3) О т в е т. (y+3)^2=8(x-3) к задаче 13006

SOVA ✎ ОДЗ: {3x-4 > 0 ⇒x > 4/3; {3x-4≠1 ⇒x≠7/3 {a+9x+5 > 0 , так как 4/3 < x меньше или равно 2,значит 17 < 9х+5 меньше или равно 23; 17+a < a+9x+5 меньше или равно 23+а ⇒ 17+а больше или равно 0 ⇒ а больше или равно -17 По определению логарифма (3x-4)^(-1)=a+9x+5 или так как х > 4/3 1=(3x-4)*(a+9x+5) 27x^2+(3a-21)x-4a-21=0 Переформулируем задачу: при каком значении параметра а квадратное уравнение имеет ровно один корень на (4/3;2] 1) если D=0 и х(вершины)∈(4/3;2] (см. рис.1) 2) если уравнение имеет два корня, т.е D > 0 и один из корней:х_(1)∈(4/3;2] или х_(2)∈(4/3;2] (см. рис.2 и рис. 3) 1) D=(3a-21)^2+4*27(4a+21)= =9a^2-126a+441+432a+2268= =9a^2+306a+2709 > 0 при любом а, значит уравнение всегда имеет два корня. 2) Обозначим f(x)=27x^2+(3a-21)x-4a-21 Если х_(1)∈(4/3;2],то f(4/3) < 0, f(2) > 0 Если х_(2)∈(4/3;2], то f(4/3) > 0, f(2) < 0 Оба условия можно объединить в одно f(4/3)*f(2) < 0 Находим f(4/3)=48+4a-28-4a-21=-1 < 0 f(2)=108+6a-42-4a-21=2a+45 2a+45 > 0 ⇒ a > -22,5 C учетом ОДЗ О т в е т. a∈[-17;+ ∞) к задаче 12996